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Chapter 1

Introduction

When faced with a financial market model, two questions naturally arise in the mind of

an investor. The first is what the greatest possible expected utility that he can obtain at

some terminal time T is, and the second is what trading strategy, or portfolio selection,

would allow him to achieve that maximum. A common model that is used as a framework

in answering this question is a financial market consisting of a riskless asset (usually a

bond assumed to have a fixed interest rate), and n financial assets (which we assume to

be stocks), whose price process (St)t∈[0,T ] is given by a system of stochastic differential

equations (SDEs)

dSt = diag(St) [µtdt+ σtdWt] .

Here, W is an n-dimensional Wiener process. µ is known as the drift rate or mean

return , while σ is known as the volatility matrix .

The Case of Full Information

When the model above was first introduced by Merton (38) in relation to the utility max-

imization problem, it was assumed that the investor had full information , i.e. he could

observe the drift rate and volatilities. Merton (38), (39) solved the utility maximization

problem via a dynamic programming approach for the case where the parameters of the

model were constant with time. The next approach that was used to tackle this problem

was martingale theory, introduced by Harrison & Pliska (24). By relating the absence

of arbitrage and the completeness of the financial market model with the existence and

uniqueness of an equivalent martingale measure, martingale theory could be used to solve

the utility maximization problem in the case of complete markets (see Cox & Huang (14)

and Karatzas et al. (29)). For the case of incomplete markets, duality methods were used

to solve the utility maximization problem (see He & Pearson (27) and Karatzas et al. (30)).

With Kramkov & Schachermayer (33) proving the existence of a utility-maximizing trading

strategy under weak conditions in a general setting, some work has been done to find ex-
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plicit solutions for these optimal trading strategies with specific utility functions (see Goll

& Kallsen (19), (20) for work on the logarithmic utility function).

The Case of Partial Information

The case of full information is not particularly realistic as it assumes that investors are able

to see the underlying drift and volatility processes that drive the stock price process. As

such, the case of partial information was introduced, in which investors could not see the

underlying drift processes, but only the historical stock prices. Mathematically, this meant

that the trading strategies which could be considered by the investor had to be adapted

to a smaller filtration (the filtration generated by the stock price process) compared to the

filtration used in the case of full information.

Lakner (35), (36) provides a general theory for the utility maximization problem in the

case of partial information. The idea of modeling the drift rate process as a continuous-time

finite state Markov chain was first introduced by Elliott & Rishel (17), making the financial

market model a hidden Markov model (HMM). When the drift rate is modeled as such,

the financial market model is called a regime-switching model . Sass & Haussmann (45)

derived an explicit representation of the utility-maximizing trading strategy for a regime-

switching model in the case of constant volatility using HMM filtering results and Malliavin

calculus. This result was extended by Haussmann & Sass (26) to the case of stochastic

volatility and more general stochastic interest rates for the bond. (See Björk et al. (9) for

a more extensive literature review for the case of partial information.)

The Case of Inside Information

Recent work has attempted to focus on investors who do not fall in the case of complete

information or partial information. While it is unreasonable to assume that investors have

complete knowledge of the drift rate, it is also not realistic for an investor to make trading

decisions based solely on historical stock prices. It is more likely that an investor would

attempt to obtain a more accurate estimate of the drift rate than that given by the historical

stock prices before executing his trading strategy. There are several ways to obtain estimates

of the drift rate, including being an “insider” of the company. For this reason, this case

is known as the case of inside information . There are a number of ways to model the

additional information that the insider has (see Corcuera et al. (13)). A natural way to

model an insider’s information is to enlarge the filtration generated by the stock prices to

incorporate any additional information on the drift rate.

The case of inside information was first studied by Pikovsky & Karatzas (43) for the

case of complete financial market models, where the additional information was modeled

as a random variable dependent on the future value of some underlying process. (An
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example of such a random variable is a noise-corrupted value of the stock at the terminal

time.) These results were then extended by Amendinger et al. (2) to the case of incomplete

financial market models, who also noted that the additional utility gained from the insider’s

random variable is the relative entropy of that random variable with respect to the original

probability measure. These two works deal with the “initial enlargement” setting, where

the extra information the insider gets is some fixed extra information at the beginning of

the trading interval. (See Ankirchner et al. (4) for a comprehensive list of works that have

analyzed the utility maximization problem in the “initial enlargement” setting.)

Problem Formulation & Thesis Outline

This thesis explores the notion of inside information from different perspective in the context

of a regime-switching model. We will assume that the financial market consists of a riskless

bond with fixed interest rate r, and a risky stock whose price process (St)t∈[0,T ] is given by

the SDE

dSt = µtStdt+ σStdWt,

where µ is a continuous-time Markov chain with two states, σ is constant, and W is a

one-dimensional Wiener process. Instead of assuming that the investor has some knowledge

of future prices, we assume that the investor is able to see a noise-corrupted signal which is

dependent on the historical drift rate. In particular, we assume that apart from the stock

price process, the investor observes another process given by the SDE

dYt = µtdt+ εdVt,

where V is a Wiener process independent of W , and ε is a parameter that controls the

amount of noise present. (In this thesis, ε is assumed to be an exogenous variable.) In

addition, we assume that the investor’s utility at time t is given by the log of the discounted

value of his portfolio at time t.

Using tools from stochastic filtering theory, we will derive explicit expressions for the

greatest possible expected utility the investor can achieve, the long-run discounted growth

rate of this wealth process, along with the trading strategy that achieves this maximum.

These expressions will be obtained for the cases of complete, partial and inside information.

Finally, we will show that in some sense, by varying the parameter ε in the case of inside

information, we approach the cases of complete and partial information.

This thesis is organized as follows: In Chapter 2, we outline background material on

stochastic processes, continuous-time Markov chains, ergodic theory and Bessel functions

which will be used in future chapters. In Chapter 3, we develop the theory of stochastic

filtering from the reference measure approach. Of particular importance is the Shiryaev-

Wonham filter, which is presented in Section 3.4. Chapter 4 sets up the regime-switching
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model which will be used for the rest of the thesis. In particular, the cases of complete,

partial and inside information within the context of the regime-switching model are defined

in Section 4.2. We begin Chapter 5 by developing the concepts of the log-optimal wealth

process and the long-run discounted growth rate. In Section 5.2, we derive explicit expres-

sions for the greatest achievable expected log utility, the long-run discounted growth rate of

this wealth process, along with the trading strategy that attains this maximum. Chapter

6 explores the relationship between the cases of complete, partial and inside information

through the long-run discounted growth rate of the wealth process that maximizes expected

log utility. Section 6.2 gives an explicit expression for this growth rate in the case of com-

plete information, while in Sections 6.3 & 6.4 we derive the stationary distributions of a

quantity from which we can calculate the growth rate in the cases of partial and inside

information. In Section 6.6, we show that from the point of view of the measures defined

by the stationary distributions in the previous sections, the cases of complete and partial

information can be viewed as the case of inside information with ε = 0 and ε =∞ respec-

tively. Finally, in Section 6.7 we provide an explicit expression for the long-run discounted

growth rate of the log-optimal wealth process, along with its asymptotic as ε goes to zero,

in the case where the the rates of entering each state of the Markov chain are equal. For

the sake of readability, proofs of certain lemmas and propositions which are more technical

in nature are in the Appendix.
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Chapter 2

Background Material

This chapter covers the mathematical background needed for this thesis. Before we begin,

let us first clear up some notational matters:

• N := {0, 1, 2, . . . }.

• R+ := [0,∞).

• x positive ⇔ x > 0, x non-negative ⇔ x ≥ 0.

• x ∨ y := max(x, y), x ∧ y := min(x, y).

• For a topological set X, B(X) := the Borel σ-algebra on X.

• To distinguish σ-algebras from filtrations, we will always denote a σ-algebra by a

single script letter (e.g. F), and a filtration by a letter with a time subscript, enclosed

in braces (e.g. {Ft}).

• When referring to a stochastic process, we will use a single letter (e.g. X), unless

we wish to make the time dependency more explicit, in which case we will use either

(Xt) or (Xt)t∈T (where T is the time set). While this notation is similar to that for

σ-algebras and filtrations, the object we are referring to should be clear from the

context.

• The script letter will serve two notation purposes: for a measurable space (Ω,F), F
will denote both the σ-algebra on Ω and the set of all real-valued random variables

which are measurable with respect to (Ω,F). Again, no confusion should arise because

of the context.

Throughout this thesis, we will also make the following assumptions:

1. Unless otherwise stated, we will assume that the underlying probability space is

(Ω,F ,P). In addition, this probability space admits a filtration {Ft}t≥0.
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2. Any probability space (Ω,F ,P) mentioned in this thesis is complete, i.e. if we define

N := {A : A ⊂ B for some B ∈ F with P(B) = 0} ,

then N ⊂ F .

3. For any underlying filtered probability space (Ω,F , {Ft},P), we will assume that {Ft}
satisfies the “usual conditions”, i.e. {Ft} is:

• augmented: N ⊂ F0, and

• right-continuous: for all t ≥ 0, Ft = ∩s>tFs.

These technical conditions are often included in the literature in order to ensure

that no technicalities can result from the behavior of the filtration. As we will be

considering relatively simple objects in probability theory for this thesis, we will not

concern ourselves with these conditions.

2.1 Basic Probability Theory

Definition 2.1.1. Given a set Ω, a σ-algebra F is a collection of subsets of Ω which

contains Ω, and is closed under complements and countable unions.

Given a collection C of subsets of Ω, the σ-algebra generated by C, denoted by σC, is the

smallest σ-algebra which contains C.

Given a real-valued random variable X on Ω, the σ-algebra generated by X is defined

as

σX := σ{X−1B : B ∈ B(R)},

where X−1B := {ω : ω ∈ Ω, X(ω) ∈ B}.
Given a collection of real-valued random variables {Xi : i ∈ I} on Ω indexed by some

arbitrary set I, the σ-algebra generated by {Xi : i ∈ I}, denoted by σ{Xi : i ∈ I}, is

the smallest σ-algebra that contains σXi for all i ∈ I.

Definition 2.1.2. Given a stochastic process X = (Xt)t≥0, the filtration generated by

X, denoted by {FXt }t≥0, is given by FXt := σ{Xs : s ≤ t} for all t.

Definition 2.1.3. Let F be some σ-algebra on Ω. A real-valued random variable X on Ω

is said to be measurable w.r.t. F if X−1B ∈ F for all B ∈ B(R). If X is measurable

w.r.t. F , we write X ∈ F .

Definition 2.1.4. Let {Ft} be a filtration on (Ω,F), and let X be a real-valued stochastic

process on Ω. X is adapted to {Ft} if for all t, Xt is measurable w.r.t. Ft.

Definition 2.1.5. (Wiener Processes.) Let {Ft}t∈[0,T ] be a filtration on (Ω,F), and let W =

(Wt)t∈[0,T ] be a continuous stochastic process (i.e. the paths t 7→ Wt(ω) are continuous for
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almost all ω ∈ Ω). W is a Wiener process/Brownian Motion on [0, T ) w.r.t. {Ft}
(or an {Ft}-Wiener process) if:

1. W is adapted to {Ft},

2. W0 = 0,

3. For any 0 ≤ s ≤ t < T , the increment Wt −Ws is independent of Fs, and

4. For any 0 ≤ s ≤ t < T , the increment Wt −Ws has the Gaussian distribution with

mean 0 and variance t− s.

For n ∈ N\{0}, a vector process W is said to be an n-dimensional Wiener process on

[0, T ) w.r.t. {Ft} if each compenent of W, denoted by W (i) for i = 1, . . . , n, is a Wiener

process on [0, T ) w.r.t {Ft}, and if for all i 6= j, W (i) is independent of W (j).

2.2 The Stochastic Integral

The fundamental object of the field of stochastic calculus is the stochastic integral, also

known as the Itô integral. Following the introduction of stochastic processes, one might

consider what it means to integrate a function with respect to a stochastic process. The

concept of the Stieltjes integral does not apply to general stochastic processes as many

of these processes have infinite variation. As such, the concept of the integral has to be

extended so as to allow a stochastic process to be the integrator. This is the role that the

stochastic integral plays.

The stochastic integral is so fundamental to the theory of stochastic processes that al-

most every book on stochastic processes contains at least a short introduction the stochastic

integrals and their construction. For the construction of the stochastic integral with respect

to a general semimartingale, refer to Métivier (40). In this thesis we will work almost exclu-

sively with the stochastic integral where the integrator is an Itô process. Here, we provide

a condensed version that will give the reader a brief overview of the stochastic integral

necessary for the development of ideas in subsequent chapters. The ideas presented here

are loosely based on Kallianpur (28), Steele (51) and van Handel (54).

Let W be a Wiener process on [0, T ) w.r.t. some filtration {Ft}. To construct the

stochastic integral of a function f with respect to W , it is necessary to restrict the class of

functions for which the integral makes sense.

Definition 2.2.1. Let B := B ([0, T ]), i.e. the Borel σ-algebra of [0, T ]. For each t ∈ [0, T ],

define Ft × B := σ{A × B : A ∈ Ft, B ∈ B}. Let f be a real-valued stochastic process with

time index [0, T ]. Then,

• f is measurable if the mapping (ω, t) 7→ ft(ω) is measurable w.r.t. FT × B.

• f is adapted if ft ∈ Ft for all t ∈ [0, T ].
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Let H2[0, T ] denote the collection of all measurable, adapted mappings f : Ω× [0, T ] 7→ R
which satisfy the integrability constraint

E
[∫ T

0
f2
t dt

]
<∞.

Theorem 2.2.2. (Stochastic integral w.r.t. a Wiener process). For every f ∈ H2[0, T ],

the stochastic integral of f w.r.t. W exists, and is denoted by
∫ T

0 ftdWt. In fact, the

stochastic integral can be defined in a manner similar to that of a Riemann sum:∫ T

0
ftdWt := lim

n→∞

n∑
k=1

fT (k−1)
n

(
WTk

n
−WT (k−1)

n

)
,

where the limit is understood in the sense of limit in L2-norm, that is, if Y =
∫ T

0 ftdWt,

then

lim
n→∞

E

∣∣∣∣∣Y −
n∑
k=1

fT (k−1)
n

(
WTk

n
−WT (k−1)

n

) ∣∣∣∣∣
2
 = 0.

The following is a well-known proposition, which follows directly from the fact that

when the integrand is in H2[0, T ], the stochastic integral is a martingale.

Proposition 2.2.3. Let f = (ft)t∈[0,T ] be an element of H2[0, T ]. Then for all 0 ≤ t ≤ T ,

E
[∫ t

0
fudWu

]
= 0.

The notion of the stochastic integral with respect to a Wiener process on [0, T ) can be

extended to a class of functions bigger than H2[0, T ].

Definition 2.2.4. Fix a terminal time T . Define H1
loc[0, T ] as the collection of all mea-

surable, adapted mappings f : Ω× [0, T ] 7→ R such that

P
{∫ T

0
|ft|dt <∞

}
= 1.

Define H2
loc[0, T ] as the collection of all measurable, adapted mappings f : Ω× [0, T ] 7→ R

such that

P
{∫ T

0
f2
t dt <∞

}
= 1.

For any stochastic process f inH2
loc[0, T ], the stochastic integral

∫ T
0 ftdWt can be defined

through a process known as localization (see Chapter 7 of Steele (51) for more details). It

should be noted that Proposition 2.2.3 does not hold in this general context— the condition

that the integrand is in H2[0, T ] cannot be dropped.

Next, we will define Itô processes and the stochastic integral with respect to an Itô

process.
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Definition 2.2.5. (Itô processes). An Itô process is a stochastic process I = (It)t∈[0,T ]

such that for each t ∈ [0, T ],

It = I0 +

∫ t

0
Xsds+

∫ t

0
ZsdWs,

where I0 is a constant, X ∈ H1
loc[0, T ] and Z ∈ H2

loc[0, T ].

Theorem 2.2.6. (Stochastic integral w.r.t. an Itô process.) Let I be an Itô process of the

form above. Let Y = (Yt)t∈[0,T ] be a process adapted to {Ft}. Then, the stochastic integral

∫ T

0
YtdIt := lim

n→∞

n∑
k=1

YT (k−1)
n

(
ITk
n
− IT (k−1)

n

)
exists and the following equation holds:∫ T

0
YtdIt =

∫ T

0
YtXtdt+

∫ T

0
YtZtdWt,

provided the processes Y X and Y Z are such that the integrals in the equation above are

well-defined.

It would be remiss to conclude an introduction to the stochastic integral without talking

about Itô’s formula (also known as Itô’s lemma). Itô’s formula is the foundation of

stochastic calculus, which allows us to manipulate stochastic integrals. Here we present the

most general form of Itô’s formula, along with Itô’s formula in one dimension as a corollary.

Theorem 2.2.7. (Itô’s Formula.) Let (W
(k)
t )t≥0, k = 1, . . . ,m, be m independent Wiener

processes. Let I
(i)
0 , i = 1, . . . , n, be random variables which are independent of the W (k)’s.

Let (X
(i)
t )t≥0, i = 1, . . . , n and (Z

(ik)
t )t≥0, i = 1, . . . , n, k = 1, . . . ,m, be adapted processes

such that for each i ∈ {1, . . . , n}, the process given by

I
(i)
t = I

(i)
0 +

∫ t

0
X(i)
u du+

∫ t

0
Z(i1)
u dW (1)

u + · · ·+
∫ t

0
Z(im)
u dW (m)

u

exists. Suppose that f(t, x1, . . . , xn) is a function that is differentiable in t and twice differ-

entiable in each of the xi’s. Then

f(t, I
(1)
t , . . . , I

(n)
t ) = f(0, I

(1)
0 , . . . , I

(n)
0 ) +

∫ t

0

∂f

∂t
(u, I(1)

u , . . . , I(n)
u )du

+

n∑
i=1

∫ t

0

∂f

∂xi
(u, I(1)

u , . . . , I(n)
u )dI(i)

u

+
1

2

n∑
i,j=1

m∑
k=1

∫ t

0

∂2f

∂xi∂xj
(u, I(1)

u , . . . , I(n)
u )Z(ik)

u Z(jk)
u du.
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Corollary 2.2.8. Let W = (Wt)t∈[0,T ] be a Wiener process on [0, T ]. Let f = f(t, x) be

continuously differentiable in t and twice continuously differentiable in x. Then for any

t ∈ [0, T ],

f(t,Wt) = f(0,W0) +

∫ t

0

∂f

∂t
(u,Wu)du

+

∫ t

0

∂f

∂x
(u,Wu)dWu +

1

2

∫ t

0

∂2f

∂x2
(u,Wu)du. (2.1)

Here, the domain of f is R+ × R.

In working with stochastic processes, one often works with integral equations rather than

differentiable equations. This is because stochastic processes are often non-differentiable.

However, writing the integral signs can be cumbersome, and they do not add much to

the discussion. As such, we introduce “differential notation” to make the notation a little

lighter. In differential notation, the term
∫ t

0 fsdWs is replaced by the “differential” ftdWt,

and random variables independent of t vanish. For example, in differential notation, an Itô

process I is of the form dIt = Xtdt+ ZtdWt.

Differentials obey the following “multiplication table”:

dt dW
(i)
t dW

(j)
t

dt 0 0 0

dW
(i)
t 0 dt 0

dW
(j)
t 0 0 dt

(Here, W (i) and W (j) are two independent Wiener processes.) For example,

(dt)(dWt) = 0, (dWt)
2 = dt,

(dIt)
2 = (Xtdt+ ZtdWt)

2

= X2
t (dt)2 + 2XtZtdtdWt + Z2

t (dWt)
2

= Z2
t dt,

and Itô’s formula for an Itô process becomes

df(t, It) =
∂f

∂t
(t, It)dt+

∂f

∂x
(t, It)dIt +

1

2

∂2f

∂x2
(t, It)(dIt)

2.

2.3 Continuous-Time Markov Chains

The theory of Markov chains is a very wide subject with many interesting results. Norris

(41) provides a substantial introduction to both discrete-time and continuous-time Markov

chains, along with some applications, while Dynkin (15) presents an in-depth treatment of

the general theory of Markov processes. In this section, we will define what we mean by
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a Markov chain, along with a construction of a continuous-time Markov chain with finite

state space, which will be used in future chapters. We then present an equation linking

functions of a Markov chain with the generator of the Markov chain. For this thesis, we

will assume that the Markov chain will not “explode” (see page 69 of Norris (41) for more

details on explosion).

The following definition highlights the slight difference in the way that we use the terms

“Markov process” and “Markov chain” in this thesis:

Definition 2.3.1. A real-valued stochastic processs X = (Xt)t≥0 is said to be a continuous-

time Markov process if for all 0 < s < t and for all B ∈ B(R),

P
{
Xt ∈ B|FXs

}
= P {Xt ∈ B|σ(Xs)} .

X is said to be a Markov chain if X is a Markov process whose state space is finite or

countably infinite, i.e. the set {Xt(ω) : t ∈ R+, ω ∈ Ω} is finite or countably infinite.

Intuitively, a Markov process is a process with no memory: the value of the process at

a future time conditioned on its historical values up to the present time is the same as that

conditioned only on its present value.

Norris (41) presents three possible ways to construct such a Markov chain. The con-

struction below is based on the third construction presented there and in Chigansky (11).

Let d ∈ N \ {0, 1}. Let E = {e1, . . . , ed} be the standard Euclidean basis for Rd, and

let p0 be some probability distribution on E. (Note that p0 can be identified with a d-

dimensional vector with non-negative entries that sum up to 1.) Introduce a family of

independent Poisson processes{(
N ij
t

)
t≥0

: i, j ∈ {1, . . . , d}, i 6= j

}
,

such that N ij has rate λij ≥ 0. Let Y = (Yn)n∈N be a discrete-time stochastic process

taking values in {1, . . . , d}, with P{Y0 = i} = p0(i) for all i. (Here, p0(i) denotes the ith

component of the vector p0.) Let J = (Jn)n∈N be a discrete-time stochastic process taking

values in R+, with J0 = 0. For n = 0, 1, 2, . . . , define the processes J and Y inductively as

follows:

Jn+1 = inf
{
t > Jn : NYnj

t 6= NYnj
Jn

for some j 6= Yn

}
,

Yn+1 =

j, if Jn+1 <∞ and NYnj
Jn+1

6= NYnj
Jn

,

Yn, if Jn+1 =∞.

(Note that if
{
t > Jn : NYnj

t 6= NYnj
Jn

for some j 6= Yn

}
is the empty set, we define Jn+1 to

11



be ∞.) Now, define a vector process I = (It)t≥0 taking values in E such that for all t ≥ 0,

It = eYn , where n is such that Jn ≤ t < Jn+1.

Under this set-up, we have the following theorem:

Theorem 2.3.2. (See Theorem 6.30 of Chigansky (11)). The process I is a continuous-time

Markov chain with state space E, initial distribution p0, and transition intensities matrix

Λ, where Λ is the d× d matrix defined by

(Λ)ij =

λij , if j 6= i,

−
∑

j 6=i λij , if j = i.

Because of this theorem, it is natural to define λii = −
∑

j 6=i λij for i = 1, . . . , d.

To construct a continuous-time Markov chain X on the state space {a1, . . . , ad} ⊂ R
with initial distribution p0 and transition intensities matrix Λ, it suffices to define X by

Xt =
d∑
i=1

aiIt(i), for all t ≥ 0, (2.2)

where It(i) is the ith component of the vector It. If f is a function of X, it only has to

be defined on the state space {a1, . . . , ad}. As such, we can identify f with a d× 1 vector:

f =


f(a1)

...

f(ad)

 . (2.3)

It is clear that for any function f on X, we have

f(Xt) =

d∑
i=1

f(ai)It(i) = fT It. (2.4)

Any continuous-time Markov process has a generator associated with it (see Section

4.2 of Varadhan (56).) In the general setting, the generator, denoted by L, is a differential

operator which acts on functions of the Markov process. In the special case where a Markov

process X is actually a finite state Markov chain, the generator is simply the transition

intensities matrix Λ. More concretely, if f is a function on X, it can be identified with the

vector in equation (2.3). Then, Lf is the function on X identified with the vector Λf . The

following proposition gives a useful expression for functions of Markov chains involving its

generator:

Proposition 2.3.3. (See equation (6.7) of Rogers (44).) Let f : {a1, . . . , ad} 7→ R be some

12



function. Then for any t ∈ [0, T ],

f(Xt) = f(X0) +

∫ t

0
(Λf)(Xs)ds+Mt,

where M is an {Ft}-martingale. In differential notation:

df(Xt) = (Λf)(Xt)dt+ dMt.

2.4 Ergodic Theory for Continuous-Time Markov Processes

Let X = (Xt)t≥0 be a real-valued stochastic process which is the solution to the SDE

dXt = f(Xt)dt+ g(Xt)dWt, (2.5)

where f and g are continuous real-valued functions, and W is a Wiener process. Assume

that this SDE has a unique strong solution. (For some sufficient conditions for such a

solution to exist, see pages 128–9 and Theorem 4.5.3 of Kloeden & Platen (32).) Note that

X is a homogeneous Markov process (see Theorem 4.21 of Xiong (57), page 141 of Kloeden

& Platen (32)).

Definition 2.4.1. A probability measure ν is an invariant probability measure (or a

stationary distribution) for a Markov process X if Pν{Xt ∈ B} = ν(B) for all B ∈
B(R), t ≥ 0, where Pν is is the law of the solution of equation (2.5) for the case where the

initial condition X0 has distribution ν.

Under certain conditions (which will be satisfied by all processes in this thesis), there

exists an invariant probability measure for the process which is the solution of equation

(2.5) (see page 90 of Has’minskǐı (25) and page 120 of Soize (50)). In fact, this invariant

probability measure is unique (see page 123 of Has’minskǐı (25)), and under conditions

which will be satisfied by all processes in this thesis, the invariant probability measure has

a density (see page 24 of Skorokhod (48) and Theorem 1.1 of Kushner (34)).

The following theorem gives an explicit formula for the invariant probability measure

under additional conditions. (For a more general version of the theorem, see Section 6.2.3

of Sobczyk (49).)

Theorem 2.4.2. Let X be a continuous-time stochastic process taking values in [0, 1], such

that X is the solution to equation (2.5). By the discussion above, X has a unique invariant

probability measure ν with density π, i.e. ν(dx) = π(x)dx, where dx is the Lebesgue measure.

Assume that g(x) = 0 for x = 0, 1, g(x) 6= 0 for 0 < x < 1, and that for some a ∈ (0, 1),∫ 1

a

2f(x′)

g2(x′)
dx′ = −∞, and 0 <

∫ 1

0

1

g2(x)
exp

[∫ x

a

2f(x′)

g2(x′)
dx′
]
dx <∞.

13



Then π is given by

π(x) =
N

g2(x)
exp

[∫ x

a

2f(x′)

g2(x′)
dx′
]
,

where N is the normalization constant such that
∫∞
−∞ π(x)dx = 1.

Proof. For any continuous function h : R 7→ R with compact support and for any t ≥ 0,

h(Xt) = h(X0) +

∫ t

0

dh

dx
(Xu)dXu +

∫ t

0

1

2

d2h

dx2
(Xu)g2(Xu)du (Itô’s formula)

= h(X0) +

∫ t

0

{
dh

dx
(Xu)f(Xu) +

1

2

d2h

dx2
(Xu)g2(Xu)

}
du+

∫ t

0

dh

dx
(Xu)g(Xu)dWu.

Taking expectations with respect to the invariant probability measure,

E [h(Xt)] = E [h(X0)] + E
[∫ t

0

{
dh

dx
(Xu)f(Xu) +

1

2

d2h

dx2
(Xu)g2(Xu)

}
du

]
+ E

[∫ t

0

dh

dx
(Xu)g(Xu)dWu

]
= E [h(X0)] +

∫ t

0
E
[
dh

dx
(Xu)f(Xu) +

1

2

d2h

dx2
(Xu)g2(Xu)

]
du.

(by Prop 2.2.3 and Fubini)

Under the invariant measure, E [h(Xt)] = E [h(X0)]. Hence,∫ t

0
E
[
dh

dx
(Xu)f(Xu) +

1

2

d2h

dx2
(Xu)g2(Xu)

]
du = 0.

As this holds for all t ≥ 0, it means that

E
[
dh

dx
(Xu)f(Xu) +

1

2

d2h

dx2
(Xu)g2(Xu)

]
= 0,∫ ∞

−∞

{
dh

dx
(x)f(x) +

1

2

d2h

dx2
(x)g2(x)

}
π(x)dx = 0. (2.6)

Using integration by parts and the fact that f is compact,∫ ∞
−∞

dh

dx
(x)f(x)π(x)dx = −

∫ ∞
−∞

h(x)
d[f(x)π(x)]

dx
dx,∫ ∞

−∞

d2h

dx2
g2(x)π(x)dx = −

∫ ∞
−∞

dh

dx
(x)

d
[
g2(x)π(x)

]
dx

dx

=

∫ ∞
−∞

h(x)
d2
[
g2(x)π(x)

]
dx2

dx.
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Substituting into equation (2.6):

∫ ∞
−∞

{
−d[f(x)π(x)]

dx
+

1

2

d2
[
g2(x)π(x)

]
dx2

}
h(x)dx = 0.

As h was arbitrary, it means that we must have

d2
[
g2(x)π(x)

]
dx2

= 2
d[f(x)π(x)]

dx
.

Integrating both sides with respect to x,

d
[
g2(x)π(x)

]
dx

= 2f(x)π(x) + c1,

where c1 is some constant. Writing q(x) = g2(x)π(x),

d

dx
q(x)− 2f(x)

g2(x)
q(x) = c1,[

d

dx
q(x)− 2f(x)

g2(x)
q(x)

]
exp

[∫ x

a
−2f(x′)

g2(x′)
dx′
]

= c1 exp

[∫ x

a
−2f(x′)

g2(x′)
dx′
]
,

d

dx

{
q(x) exp

[∫ x

a
−2f(x′)

g2(x′)
dx′
]}

= c1 exp

[∫ x

a
−2f(x′)

g2(x′)
dx′
]
.

Integrating both sides from 0 to x,

q(x) exp

[∫ x

a
−2f(x′)

g2(x′)
dx′
]

= c1

∫ x

0
exp

[∫ x′′

a
−2f(x′)

g2(x′)
dx′

]
dx′′ +N, (N constant)

q(x) = N exp

[∫ x

a

2f(x′)

g2(x′)
dx′
]

+ c1

∫ x

0
exp

[∫ x

x′′

2f(x′)

g2(x′)
dx′
]
dx′′.

Substituting x = 1 into the above equation:

0 = c1

∫ 1

0
exp

[∫ 1

x′′

2f(x′)

g2(x′)
dx′
]
dx′′.

As 2f(x′)
g2(x′) is finite for all x′ ∈ (0, 1),

∫ 1
0 exp

[∫ 1
x′′

2f(x′)
g2(x′)dx

′
]
dx′′ must be positive. This means

that c1 = 0. As such,

π(x) =
N

g2(x)
exp

[∫ x

a

2f(x′)

g2(x′)
dx′
]
,

where
1

N
=

∫ 1

0

1

g2(x)
exp

[∫ x

a

2f(x′)

g2(x′)
dx′
]
dx.

Now, the density π is well-defined if and only if N is finite and non-zero, but N is indeed

finite and non-zero by assumption.
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Invariant probability measures are useful because they lie at the heart of ergodic theory.

The following theorem shows that, in some sense, long-run time averages of functions of X

are determined by the invariant probability measure of X.

Theorem 2.4.3. Let X be the solution to equation (2.5). Assume that X has a unique

invariant probability measure that has density π. Let h be a function integrable w.r.t. the

invariant probability measure. Then, almost surely,

lim
T→∞

1

T

∫ T

0
h(Xt)dt =

∫ ∞
−∞

h(x)π(x)dx.

In particular,

E
[

lim
T→∞

1

T

∫ T

0
h(Xt)dt

]
=

∫ ∞
−∞

h(x)π(x)dx.

Proof. See Theorem 5.1 of Chapter IV in Has’minskǐı (25).

Ergodic theory in the case where X is a two-state continuous-time Markov chain is

significantly easier. Let the state space of X be {a, b}, and let the transition intensities

matrix of X be given by

Λ =

[
−λb λb

λa −λa

]
,

with (λa, λb) 6= (0, 0). The assumption on the λ’s ensures that X is dependent on t.

While the labeling of the λ’s seems a little counterintuitive, they are labeled as such so that

for each state i with i = a, b, when the Markov chain enters the other state, the time taken

for the Markov chain to return to state i is an exponential random variable with rate λi.

In this case, invariant probability measures for X can be defined in the following way

(which is equivalent to Definition 2.4.1):

Definition 2.4.4. Let π =
[
π1 π2

]
be a 1× 2 vector such that π1 + π2 = 1. Then π is an

invariant probability measure for X if and only if

πΛ = 0.

From the definition, it is clear that X has a unique invariant probability measure given

by

πa =
λa

λa + λb
, πb =

λb
λa + λb

,

and Theorem 2.4.3 reduces to the following:

Theorem 2.4.5. (See Theorem 3.8.1 of Norris (41)). For any function f : {a, b} 7→ R,

P
{

lim
T→∞

1

T

∫ T

0
f(Xs)ds =

λaf(a) + λbf(b)

λa + λb

}
= 1.
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2.5 Modified Bessel Functions of the Second Kind

In this section we will present properties of the modified Bessel function of the second kind

which we will use in Chapter 6.

For ν ∈ R, let Kν(z) denote the modified Bessel function of the second kind of order ν.

By formula 8.486.16 of Gradshteyn & Ryzhik (21), for any ν, K−ν(z) = Kν(z). Thus, we

only have to consider have to consider non-negative orders of the Bessel function. In this

thesis, we will only consider z ∈ R+.

Proposition 2.5.1. (See page 435 of Olver (42).) Let ν ≥ 0, z > 0. Then,

1. Kν(z) is a continuous positive function of both ν and z.

2. For fixed z, Kν(z) increases as ν increases.

Proposition 2.5.2. (Asymptotic behavior of Kν(z) as z → 0, for fixed ν.) As z → 0,

Kν(z) ∼ Γ(ν)

2
(
z
2

)ν , ν > 0,

and

K0(z) ∼ log

(
1

z

)
.

Here, f(z) ∼ g(z) as z → 0 means that limz→0
f(z)
g(z) = 1.

The following proposition shows, in a precise manner, that as z → 0, Kν(z) approaches

∞ much faster for larger orders of ν.

Proposition 2.5.3. Fix ν1 > ν2 ≥ 0. Then
Kν1 (z)

Kν2 (z) →∞ as z → 0.

Proof. Case 1: ν2 > 0. Then by Proposition 2.5.2,

lim
z→0

Kν1(z)

Kν2(z)
= lim

z→0

Γ(ν1)

2
(
z
2

)ν1 2
(
z
2

)ν2
Γ(ν2)

= C lim
z→0

zν2−ν1 (C some positive constant)

=∞. (as ν2 − ν1 < 0)

Case 2: ν2 = 0. Then by Proposition 2.5.2,

lim
z→0

Kν1(z)

Kν2(z)
= lim

z→0

Γ(ν1)

2
(
z
2

)ν1 1

log
(

1
z

)
= C lim

z→∞
zν1

1

log z
(C some positive constant)

=∞,

as the logarithm of z grows more slowly than any positive power of z.
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The following is a technical lemma that will be used in Chapter 6.

Lemma 2.5.4. Let b be some real constant. Then,

lim
z→0

K1+bz(z)

Kbz(z)
=∞.

Proof. First, assume that b 6= 0. Pick some ε0 such that 0 < ε0 � 1
2 . Then for all z such

that 0 < z ≤ ε0
|b| ,

|bz| ≤ ε0,

⇒ 1 + bz ≥ 1− ε0, bz ≤ ε0.

Applying Proposition 2.5.1, for 0 < z ≤ ε0
|b| ,

K1+bz(z)

Kbz(z)
≥ K1−ε0(z)

Kε0(z)
. (2.7)

Taking limits on both sides and using the fact that ε0 � 1
2 ,

lim
z→0

K1+bz(z)

Kbz(z)
≥ lim

z→0

K1−ε0(z)

Kε0(z)
=∞. (by Prop 2.5.3)

Note that when b = 0, equation (2.7) still holds, and so the conclusion is true for b = 0 as

well.

We end this section with asymptotics for K0 and K1 as z goes to zero, which are more

precise compared to the asymptotics given in Proposition 2.5.2. This result will be used

when calculating the asymptotic for the long-run discounted growth rate in Section 6.7.

Before presenting the asymptotics for K0 and K1, we present asymptotics for I0 and I1,

which are the modified Bessel functions of the first kind with orders 0 and 1 respectively.

Lemma 2.5.5. As z goes to zero,

I0(z) = 1 +O(z2), and I1(z) = O(z).

Here, O represents the big-O notation, that is, if f(z) = O (g(z)) as z goes to zero, then

there exist constants M and ε > 0 such that for all z with 0 < z < ε,
∣∣∣f(z)
g(z)

∣∣∣ < M .

Proof. From formula 9.6.12 of Abramowitz (1),

I0(z) = 1 +
∞∑
k=1

1

(k!)2

(
z2

4

)k
.
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As such, for 0 < z < 1
2 , ∣∣∣∣∣I0(z)− 1

z2

∣∣∣∣∣ =
1

4

∞∑
k=1

1

(k!)2

(
z2

4

)k−1

≤ 1

4
+
(
z2 + z4 + z6 + . . .

)
=

1

4
+

z2

1− z2

<
1

4
+

1/4

3/4
=

7

12
.

Thus I0(z) = 1 +O(z2) as z goes to zero. From formula 9.6.10 of Abramowitz (1),

I1(z) =
z

2

∞∑
k=0

1

k! Γ(k + 2)

(
z2

4

)k
=
z

2

∞∑
k=0

1

k!(k + 1)!

(
z2

4

)k
,

where Γ is the gamma function. Thus, for 0 < z < 1
2 ,∣∣∣∣∣I1(z)

z

∣∣∣∣∣ =
1

2

[
1 +

∞∑
k=1

1

k!(k + 1)!

(
z2

4

)k]

≤ 1

2
+
(
z2 + z4 + z6 + . . .

)
<

1

2
+

1/4

3/4
=

5

6
.

Hence, I1(z) = O(z) as z goes to zero.

Proposition 2.5.6. As z goes to zero,

K0(z) = −
(

log
z

2
+ γ
)

+O(z2 log z), and K1(z) =
1

z
+O(z log z),

where γ is the Euler-Mascheroni constant.

Proof. By equation 3.3.15 of Bender (6),

K0(z) = −
(

log
z

2
+ γ
)
I0(z) +

∞∑
n=1

1

(n!)2

(
1 +

1

2
+ · · ·+ 1

n

)(
z2

4

)n
.
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Note that for 0 < z < 1
2 ,

1

z2

∞∑
n=1

1

(n!)2

(
1 +

1

2
+ · · ·+ 1

n

)(
z2

4

)n
=

1

4
+

1

4

∞∑
n=2

1

(n!)2

(
1 +

1

2
+ · · ·+ 1

n

)(
z2

4

)n−1

<
1

4
+

1

4

∞∑
n=2

n

(n!)2

(
z2

4

)n−1

<
1

4
+ (z2 + z4 + . . . )

<
1

4
+

1/4

3/4
=

7

12
.

Hence, as z goes to zero,

K0(z) = −
(

log
z

2
+ γ
) [

1 +O(z2)
]

+O(z2)

= −
(

log
z

2
+ γ
)

+O(z2 log z).

By equation 3.3.21 of Bender (6),

K1(z) =
(

log
z

2
+ γ
)
I1(z) +

1

z
− z

4
− z

2

∞∑
n=1

(
z2

4

)n
n!(n+ 1)!

(
1 +

1

2
+ · · ·+ 1

n
+

1

2n+ 2

)
.

Note that for 0 < z < 1
2 ,

1

z3

z

2

∞∑
n=1

(
z2

4

)n
n!(n+ 1)!

(
1 +

1

2
+ · · ·+ 1

n
+

1

2n+ 2

)
<

1

2z2

∞∑
n=1

n+ 1

n!(n+ 1)!

(
z2

4

)n
<

1

2z2

∞∑
n=1

z2n

<
1

2
+ (z2 + z4 + . . . ),

which is finite. Hence, as z goes to zero,

K1(z) =
(

log
z

2
+ γ
)
O(z) +

1

z
− z

4
+O(z3)

=
1

z
+O(z log z),

as required.
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Chapter 3

Filtering Theory

In this chapter, we first set up the filtering problem in continuous-time before presenting cer-

tain theorems which we will apply (in later chapters) to the logarithmic utility optimization

problem in the regime-switching model. Several of the results here will be multi-dimensional

versions of theorems presented in Chigansky (11). (For a deeper understanding of stochastic

filtering theory, see Xiong (57).)

3.1 Setting up the Filtering Problem

Assume that there is an underlying complete filtered probability space (Ω,F , {Ft},P). Fix

some terminal time T ∈ R+, and a parameter n, which is a positive integer. Let X and Y

be stochastic processes defined on the probability space with the following properties:

1. X is a real-valued continuous-time Markov chain on the time interval [0,T] which is

adapted to {Ft}. Assume that X has a finite state space. (Assume that X is given

by equation (2.2) and the associated construction presented in Section 2.3.)

2. Y takes values in Rn.

3. Let the ith component of Y be the stochastic process denoted by Y (i). Then for

each i = 1, . . . , n, there exists a measurable function g(i) : R+ × R 7→ R such that

the process g(i)(·, X·) is in H2[0, T ], and there exists an {Ft}-Wiener process W (i) on

[0, T ] which is independent of X such that

Y
(i)
t =

∫ t

0
g(i)(s,Xs)ds+BW

(i)
t ,

for all t ∈ [0, T ]. Here, B is a positive constant. In differential notation, the above

would be written as

dY
(i)
t = g(i)(t,Xt)dt+BdW

(i)
t . (3.1)

4. For i 6= j, W (i) is independent of W (j).
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For notational convenience, let

g =


g(1)

...

g(n)

 , W =


W (1)

...

W (n)

 .
We can then aggregate the equations in property 3 to get

Yt =

∫ t

0
g(s,Xs)ds+BWt (3.2)

for all t ∈ [0, T ]. Note that W is an n-dimensional {Ft}-Wiener process, and that X and

Y are both adapted to the filtration {Ft}.
We can interpret the preceding set-up in the following way: X is a signal process, i.e.

it represents, in some way, the state of the system we are interested in. We cannot see X

directly. Instead, we can see n observation processes, modeled by Y, which depend on

X in some way (more precisely, Y depends on X through equation (3.2)). Note that X

cannot be calculated deterministically given Y: the Wiener process W in equation (3.2)

models the fact that there might be noise present in the observation processes.

With such a set-up, we can ask ourselves the following question: given that we know the

values of the observation processes up till time t (time t included), what is our best guess

of the value of the signal process at time t?

Note that the set-up makes certain implicit assumptions. For example, the amount of

noise present in the observation processes does not depend on the state of the system. In

some cases such assumptions might be unrealistic. However, these assumptions simplify the

model and are plausible for the problem that we are working with in this thesis.

3.2 Information Known at Time t

Let Y : (Ω,F ,P) 7→ (Rn,B(Rn))R+ be a continuous-time stochastic process taking values

in Rn. Recalling Definition 2.1.2, {FY
t }t≥0 is a filtration on (Ω,F ,P), where

FY
t = σ{Ys : 0 ≤ s ≤ t}.

Intuitively, FY
t represents the information that we learn from the process Y from time

0 to time t. This notion of “information” can be made more concrete: see Section 4 in

Chapter 2 of Cinlar (12).

The following proposition relates the filtration generated by an n-dimensional stochastic

process with the filtrations generated by each of its components.

Proposition 3.2.1. Let Y be a stochastic process taking values on Rn, for some n ∈ N.
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Denote the components of Y by Y (i), for i = 1, . . . , n. Then, for any time t,

FY
t = FY (1)

t ∨ · · · ∨ FY (n)

t = Ht,

where Ht is the smallest σ-algebra containing σY
(i)
s , for all s and i such that 0 ≤ s ≤ t,

i = 1, . . . , n.

Proof. We will repeatedly use the fact that if C is a subset of a σ-algebra G, then σC ⊂ G.

For any fixed i, σ{Y (i)
s : 0 ≤ s ≤ t} is the smallest σ-algebra containing σY

(i)
s for all

s ∈ [0, t]. Since Ht is another σ-algebra containing σY
(i)
s for all s ≤ t,

σ{Y (i)
s : 0 ≤ s ≤ t} ⊂ Ht ∀i,

⇔ FY (i)

t ⊂ Ht ∀i, (by definition of FY (i)

t )

⇒ FY (1)

t ∨ · · · ∨ FY (n)

t ⊂ Ht.

But it is clear that σY
(i)
s ⊂ FY (1)

t ∨ · · · ∨ FY (n)

t for all s and i. Thus, by definition of Ht,
Ht is contained in FY (1)

t ∨ · · · ∨ FY (n)

t . Hence, we conclude that Ht = FY (1)

t ∨ · · · ∨ FY (n)

t .

For the other equation,

σY (1)
s , . . . , σY (n)

s ⊂ Ht ∀ 0 ≤ s ≤ t,

⇒ σY (1)
s ∨ · · · ∨ σY (n)

s ⊂ Ht ∀ 0 ≤ s ≤ t,

⇒
∨

0≤s≤t
σY (1)

s ∨ · · · ∨ σY (n)
s ⊂ Ht,

⇒
∨

0≤s≤t
σYs ⊂ Ht, (by Prop II.4.3 of Cinlar (12))

⇒ FY
t ⊂ Ht. (by definition of FY

t )

But it is clear that σY
(i)
s ⊂

∨
0≤s≤t

[
σY

(1)
s ∨ · · · ∨ σY (n)

s

]
= FY

t for all s and i, and so by

the definition of Ht, Ht ⊂ FY
t . In conclusion, we have

FY (1)

t ∨ · · · ∨ FY (n)

t = Ht = FY
t .

Intuitively, the proposition above makes sense. If we had the means to get n different

observation signals at each time, the amount of “information” about the system that we

have at a certain time should be the same, whether the observation signals are presented

to us as n seperate real signals or as one vector signal.

3.3 The Reference Measure Approach

The observation process Y consists of two components: the deterministic portion dependent

on the signal process X, and noise, modeled by the Wiener process W. The underlying
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idea of the reference measure approach is the use of the observation process for introducing

a new reference probability. Under this reference probability measure, we are somehow able

to remove the noise introduced by the Wiener process, thus gaining some idea of what the

underlying signal process looks like.

Fundamental to this approach is Girsanov’s theorem, which we present in its multi-

dimensional form:

Theorem 3.3.1. (Multi-dimensional Girsanov Theorem, see Theorem 7.1.3 of Kallianpur

(28)). Let (Ω,F , {Ft}t∈[0,T ],P) be a complete filtered probability space. Let W be an n-

dimensional {Ft}-Wiener process. Let f = (ft)t≥0 be an n-dimensional measurable process

adapted to {Ft} such that

P
{∫ T

0
‖ft‖2dt <∞

}
= 1.

(Here, ‖ · ‖ represents the Euclidean norm on Rn.) Define

Mt(f) = exp

[∫ t

0
fs · dWs −

1

2

∫ t

0
‖fs‖2ds

]
,

where
∫ t

0 fs · dWs =
∑N

i=1

∫ t
0 f

(i)
s dW

(i)
s . Assume that EMT (f) = 1. Let P̃ be the probability

measure given by dP̃ = MT (f)dP. If W̃ is given by

W̃t = Wt −
∫ t

0
fsds,

then W̃ is an n-dimensional Wiener process w.r.t. {Ft} under the probability measure P̃.

In addition, M(f) is a martingale w.r.t. P.

The Kallianpur-Striebel formula, which is the main result of this section, gives an explicit

expression for the expected value of a function depending solely on Xt given the information

FY
t , i.e. E

[
f(Xt)|FY

t

]
. Before stating the Kallianpur-Striebel formula, we will present a

few lemmas which will be used in its proof.

Lemma 3.3.2. (Bayes formula, see pages 174–5 of van Handel (55)). Let (Ω,F) be a

measurable space on which two equivalent measures, P and P̃, are defined. Let G be a sub

σ-algebra of F . Then for any integrable X,

E[X|G] =
Ẽ
[
X dP

dP̃ |G
]

Ẽ
[
dP
dP̃ |G

] .

Here, Ẽ denotes expectation w.r.t. the probability measure P̃.

Lemma 3.3.3. Let M = (Mt)t∈[0,T ] be a positive {Ft}-martingale w.r.t. P. Define a new

measure dP̃ by dP̃ = MTdP. Then 1
M is an {Ft}-martingale w.r.t. P̃.
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Proof. As Mt > 0 for all t, the process 1
M is well-defined. It is clear that 1

M is adapted to

{Ft}. For each t,

Ẽ
[∣∣∣∣ 1

Mt

∣∣∣∣] = E
[
MT

Mt

]
(by definition of P̃, and M > 0)

= E
[
E
[
MT

Mt

∣∣∣∣Ft]]
= E

[
1

Mt
E[MT | Ft]

]
(as Mt ∈ Ft)

= E
[

1

Mt
Mt

]
(as M is an {Ft}-martingale)

= 1 <∞,

hence 1
Mt

is integrable for all t. Now, fix 0 ≤ s ≤ t. Then

Ẽ
[

1

Mt

∣∣∣ Fs] =
E
[

1
Mt

dP̃
dP

∣∣∣Fs]
E
[
dP̃
dP

∣∣∣Fs] (by Bayes formula)

=
E
[
E
[
MT
Mt

∣∣∣Ft]∣∣∣Fs]
E [MT | Fs]

=
E [1 | Fs]

E [MT | Fs]
(as above)

=
1

Ms
. (as M is an {Ft}-martingale)

In conclusion, 1
M is an {Ft}-martingale w.r.t. P̃.

Lemma 3.3.4. (See Lemma 11.3.1 of Kallianpur (28)). Let (Ω,F , {Ft}t∈[0,T ],P) be a com-

plete filtered probability space. Let W be an n-dimensional {Ft}-Wiener process on [0, T ],

and let (gt)t∈[0,T ] be a measurable process (in the sense of Definition 2.2.1) taking values in

Rn. let B be some positive real constant. Assume that P
{
ω :
∫ T

0 gt(ω)2dt <∞
}

= 1, and

that processes g and W are independent of each other. Then

E exp

[
1

B

∫ T

0
gs · dWs −

1

2B2

∫ T

0
‖gs‖2ds

]
= 1. (3.3)

If, in addition, g is adapted to the filtration {Ft}, then by defining the probability measure

P̃ on (Ω,F) by

dP̃ = exp

[
1

B

∫ T

0
gs · dWs −

1

2B2

∫ T

0
‖gs‖2ds

]
dP,

The process W̃ given by

W̃t = Wt −
1

B

∫ t

0
gsds

25



is an {Ft}-Wiener process under the probability measure P̃.

Proof. See page 67 in the Appendix.

Theorem 3.3.5. (Multi-dimensional Kallianpur-Striebel Formula, see Chigansky (11)).

Consider the set-up in Section 3.1. Let (Ω̆, F̆ , P̆) be a copy of (Ω,F ,P). Then, for any

bounded measurable f : R 7→ R and for any t ∈ [0, T ],

E
[
f(Xt)|FY

t

]
(ω) =

Ĕf (Xt(ω̆))ψt (X(ω̆),Y(ω))

Ĕψt (X(ω̆),Y(ω))
, P− a.s.,

where

ψt(X,Y) = exp

{
1

B2

∫ t

0
g(s,Xs) · dYs −

1

2B2

∫ t

0
‖g(s,Xs)‖2ds

}
.

Proof. For t ∈ [0, T ], let

zt(X,W) = exp

{
− 1

B

∫ t

0
g(s,Xs) · dWs −

1

2B2

∫ t

0
‖g(s,Xs)‖2ds

}
.

Note that for any t,

zt(X,W)−1 = exp

{
1

B

∫ t

0
g(s,Xs) · dWs +

1

2B2

∫ t

0
‖g(s,Xs)‖2ds

}
= exp

{
1

B

∫ t

0
g(s,Xs) ·

[
1

B

(
dYs − g(s,Xs)ds

)]
+

1

2B2

∫ t

0
‖g(s,Xs)‖2ds

}
(as dYs = g(s,Xs)ds+BdWs)

= exp

{
1

B2

∫ t

0
g(s,Xs) · dYs −

1

2B2

∫ t

0
‖g(s,Xs)‖2ds

}
= ψt(X,Y).

By applying Lemma 3.3.4 to −g and W, we have EzT (X,W) = 1, and the probability

measure P̃ defined by

dP̃ = zT (X,W)dP

is a probability measure on (Ω,F). Using the fact that P and P̃ are equivalent,

dP
dP̃

=

(
dP̃
dP

)−1

= zT (X,W)−1 = ψT (X,Y).

By Girsanov’s theorem, (zt(X,W)) is an {Ft}-martingale w.r.t. P. By Lemma 3.3.3,

(ψt(X,Y)) is an {Ft}-martingale w.r.t. P̃.

Let D[0,T ] be the space of càdlàg paths on [0, T ] taking values in R. (A càdlàg path
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is a path that is everywhere right-continuous and has left limits everywhere.) For each

x ∈ D[0,T ], define process Yx by

Yx
t =

1

B

∫ t

0
g(s, xs)ds+ Wt, t ∈ [0, T ].

By Girsanov’s theorem, Yx is an n-dimensional Wiener process under P̃. Thus, for any

bounded measurable functional Ψ : Cn[0,T ] 7→ R, where Cn[0,T ] is the space of continuous

paths on [0, T ] taking values in Rn,

E [zT (x,W)Ψ(Yx)] =

∫
Cn

[0,T ]

Ψ(y)µW(dy), µX − a.s., (3.4)

where µW is the Wiener measure on Cn[0,T ], and µX is the probability measure on D[0,T ]

induced by X. Thus, for any bounded measurable functionals Ψ and Φ,

Ẽ [Ψ(Y)Φ(X)] = E [zT (X,W)Ψ(Y)Φ(X)] (by definition of P̃)

= E
[
E
[
zT (X,W)Ψ(Y)Φ(X) | FXT

]]
= E

[
Φ(X)E

[
zT (X,W)Ψ(Y) | FXT

]]
=

∫
D[0,T ]

Φ(x)E [zT (x,W)Ψ(Yx)]µX(dx).

By equation (3.4) and the fact that X and W are independent under P,

Ẽ [Ψ(Y)Φ(X)] =

[∫
Cn

[0,T ]

Ψ(y)µW(dy)

][∫
D[0,T ]

Φ(x)µX(dx)

]
, (3.5)

which implies that X and Y are independent under P̃. Setting Φ = 1, Ψ arbitrary in

equation (3.5) shows that Y is an n-dimensional Wiener process under P̃. Setting Ψ = 1,

Φ arbitrary in equation (3.5) shows that X has the same distribution under P and P̃. As

such,

E
[
f(Xt)|FY

t

]
=

Ẽ
[
f(Xt)ψT (X,Y) | FY

t

]
Ẽ
[
ψT (X,Y) | FY

t

] (by Bayes formula)

=
Ẽ
[
Ẽ [f(Xt)ψT (X,Y) | Ft] | FY

t

]
Ẽ
[
Ẽ [ψT (X,Y) | Ft] | FY

t

] (as FY
t ⊂ Ft)

=
Ẽ
[
f(Xt)ψt(X,Y) | FY

t

]
Ẽ
[
ψt(X,Y) | FY

t

] ,

where the last equality above holds because X is adapted to {Ft} and (ψt(X,Y)) is an

{Ft}-martingale under P̃. Using the independence of X and Y under P̃, and the fact that
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X has the same distribution under P and P̃,

E
[
f(Xt)|FY

t

]
(ω) =

Ĕf (Xt(ω̆))ψt (X(ω̆),Y(ω))

Ĕψt (X(ω̆),Y(ω))
.

for all ω ∈ Ω.

Introduce the following notation: For a function f : R 7→ R, let πt(f) := E[f(Xt)|FY
t ],

and let σt(f) := Ẽ
[
f(Xt)ψt|FY

t

]
, where Ẽ and ψ are as defined in Theorem 3.3.5. π is

known as the normalized filter , while σ is known as the unnormalized filter . Note

that for any bounded and measurable f , the Kallianpur-Striebel formula can be restated as

πt(f) =
σt(f)

σt(1)
. (3.6)

(Here, 1 is the function that maps everything to 1.)

Now, assume that g is homogeneous, i.e. for each i, g(i)(s,Xs) = g(i)(Xs). Then the

unnormalized filter must satisfy the following SDE:

Theorem 3.3.6. (Multi-dimensional Zakai equation). Under the assumptions of Theorem

3.3.5, along with the assumption that g is homogeneous, for bounded measurable f : R 7→ R,

dσt(f) = σt(Λf)dt+
1

B2
σt(fg) · dYt, (3.7)

with σ0(f) = Ef(X0).

Proof. For each t, let

It :=
1

B2

∫ t

0
g(Xs) · dYs −

1

2B2

∫ t

0
‖g(Xs)‖2ds

=
1

B2

n∑
i=1

∫ t

0
g(i)(Xs)dY

(i)
s −

1

2B2

n∑
i=1

∫ t

0
g(i)(Xs)

2ds.

In differential notation,

dIt =
1

B2

n∑
i=1

g(i)(Xt)dY
(i)
t −

1

2B2

n∑
i=1

g(i)(Xt)
2dt

=
1

B2
g(Xt) · dYt −

1

2B2
‖g(Xt)‖2dt.
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Using the fact that dY
(i)
t dY

(j)
t = 0 for all i 6= j,

(dIt)
2 =

1

B4

n∑
i=1

g(i)(Xt)
2
(
dY

(i)
t

)2

=
1

B4

n∑
i=1

g(i)(Xt)
2B2dt (using Eqn (3.1))

=
1

B2

n∑
i=1

g(i)(Xt)
2dt

=
1

B2
‖g(Xt)‖2dt.

As ψt = eIt , using Itô’s formula (Theorem 2.2.7),

dψt = ψtdIt +
1

2
ψt(dIt)

2

= ψt

[
1

B2
g(Xt) · dYt −

1

2B2
‖g(Xt)‖2dt

]
+

1

2B2
ψt‖g(Xt)‖2dt

=
1

B2
ψtg(Xt) · dYt.

By Itô’s formula for general martingales and noting that the independence of X and W

implies ⇒ df(Xt)dψt = 0,

f(Xt)ψt = f(X0)ψ0 +

∫ t

0
ψsdf(Xs) +

∫ t

0
f(Xs)dψs

= f(X0) +

∫ t

0
ψsΛf(Xs)ds+

∫ t

0
ψsdMs +

1

B2

∫ t

0
f(Xs)g(Xs)ψs · dYs

(by Prop 2.3.3)

= f(X0) +

∫ t

0
ψsΛf(Xs)ds+

∫ t

0
ψsdMs +

1

B2

n∑
i=1

∫ t

0
f(Xs)g

(i)(Xs)ψsdY
(i)
s .

From this point, the proof is exactly the same as in the case of the single-dimensional Zakai

equation (see pages 106–7 of Chigansky (11), page 90 of Xiong (57)).

Theorem 3.3.7. (Fujisaki-Kallianpur-Kunita (FKK) equation). Under the assumptions of

Theorem 3.3.5, for bounded measurable f : R 7→ R, πt(f) satisfies the equation

πt(f) = π0(f) +

∫ t

0
πs(Λf)ds+

∫ t

0

1

B

[
πs(fg)− πs(f)πs(g)

]
· dW̃s, (3.8)

where the process W̃ is given by

W̃t =
1

B

[
Yt −

∫ t

0
πs(g)ds

]
.
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Proof. Using the Zakai equation (equation (3.7)) for f = 1 and for general f , we have

dσt(1) =
1

B2
σt(g) · dYt, σ0(1) = 1,

dσt(f) = σt(Λf)dt+
1

B2
σt(fg) · dYt, σ0(f) = Ef(X0).

Recalling that
(
dY

(i)
t

)2
= B2dt for all i = 1, . . . , n, and that dY

(i)
t dY

(j)
t = 0 for all i 6= j,

dσt(f)dσt(1) =

[
1

B2

n∑
i=1

σt(g
(i))dY

(i)
t

][
σt(Λf)dt+

1

B2

n∑
i=1

σt(fg
(i))dY

(i)
t

]

=
1

B4

n∑
i=1

σt(g
(i))σt(fg

(i))(B2dt)

=
1

B2

n∑
i=1

σt(g
(i))σt(fg

(i))dt

=
1

B2
σt(g) · σt(fg)dt,

and

(dσt(1))2 =
1

B4

n∑
i=1

σt(g
(i))2

(
dY

(i)
t

)2

=
1

B2

n∑
i=1

σt(g
(i))2dt

=
1

B2
‖σt(g)‖2dt.

From the Kallianpur-Striebel formula (equation (3.6)), πt(f) = σt(f)
σt(1) . Using Itô’s formula

for the function f(x, y) = x
y ,

dπt(f) =
1

σt(1)
dσt(f)− σt(f)

σt(1)2
dσt(1)− 1

σt(1)2
dσt(f)dσt(1) +

1

2

2σt(f)

σt(1)3
(dσt(1))2

=
σt(Λf)

σt(1)
dt+

σt(fg) · dYt

B2σt(1)
− σt(f)σt(g) · dYt

B2σt(1)2

− σt(g) · σt(fg)

B2σt(1)2
dt+

σt(f)‖σt(g)‖2

B2σt(1)3
dt

= πt(Λf)dt+
πt(fg) · dYt

B2
− πt(f)πt(g) · dYt

B2

− πt(g) · πt(fg)

B2
dt+

πt(f)πt(g) · πt(g)

B2
dt (by Eqn (3.6))

= πt(Λf)dt+
1

B2

{[
πt(fg)− πt(f)πt(g)

]
· dYt

−
[
πt(fg)− πt(f)πt(g)

]
· πt(g)dt

}
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= πt(Λf)dt+
1

B

[
πt(fg)− πt(f)πt(g)

]
·
{

1

B

[
dYt − πt(g)dt

]}
.

As such, we have

πt(f) = π0(f) +

∫ t

0
πs(Λf)ds+

∫ t

0

1

B

[
πs(fg)− πs(f)πs(g)

]
· dW̃s.

It is worth noting that the FKK equation could be derived via a different approach known

as the “innovation approach”. (See pages 97–103 in Chigansky (11) for more details.)

We conclude this section with the following proposition, which we will use in Sections

6.3 & 6.4 when determining the stationary distribution of a stochastic process.

Proposition 3.3.8. (See Lemma 2.2 of Fujisaki, Kallianpur & Kunita (18).) W̃ is an

n-dimensional Wiener process on [0, T ] with respect to {FY
t }.

3.4 The Shiryaev-Wonham Filter

As with the Zakai and FKK equations, set up the observation process Y such that the

process g depends only on the state of the signal process:

Yt =

∫ t

0
g(Xs)ds+BWt. (3.9)

As the signal process takes on finitely many values (let these values be a1, . . . , ad), we can

view g(X) as a matrix

G =


g(1)(a1) . . . g(n)(a1)

...
. . .

...

g(1)(ad) . . . g(n)(ad)

 .
The fact that the signal process only takes on a finite number of values makes it easy

to calculate expected values. For each time t, let Φt be the d × 1 vector such that its ith

component is given by Φt(i) = P{Xt = ai|FY
t }. Then for any function f ,

E
[
f(Xt)|FY

t

]
= E

[
d∑
i=1

f(ai)1{Xt=ai}

∣∣∣∣ FY
t

]
=

d∑
i=1

f(ai)Φt(i).

Below is the filter for the vector Φ (see page 117 of Chigansky (11) for the case where

Y is one-dimensional):

Theorem 3.4.1. (Multi-dimensional Shiryaev-Wonham filter). The vector Φt satisfies the

SDE

dΦt = ΛTΦtdt+
1

B2

[
diag(Φt)−ΦtΦ

T
t

]
G
[
dYt −GTΦtdt

]
, Φ0 = p0. (3.10)
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Proof. For each j, let It(j) denote the jth component of the vector It. Fix i ∈ {1, . . . , d}.
Consider the function f given by

f(aj) =

1, if j = i,

0, if j 6= i.

By the construction of I, for any time t, exactly one of It(1), . . . , It(d) has value 1, and the

rest have value 0. By equation (2.2), we have f(Xt) = It(i) for all t. Note that as a vector,

Λf =


λ11 . . . λ1d

...
. . .

...

λd1 . . . λdd

 ei =


λ1i

...

λdi

 ,
where ei is the ith vector in the standard Euclidean basis for Rd. As such, applying

Proposition 2.3.3 and using equation (2.4),

It(i) = I0(i) +

∫ t

0

d∑
j=1

λjiIs(j)ds+Mt(i),

where M(i) is some martingale. Note that It(i) = 1{Xt=ai}, hence Φt(i) = E
[
It(i)|FY

t

]
=

E
[
f(Xt)|FY

t

]
. Applying Theorem 3.3.7,

Φt(i) = Φ0(i) +

∫ t

0
E

 d∑
j=1

λjiIs(j)

∣∣∣∣FY
s

 ds
+

1

B2

∫ t

0

{
E
[
Is(i)g(Xs)|FY

s

]
− Φs(i)E

[
g(Xs)|FY

s

]}
·
[
dYt −

∫ t

0
E
[
g(Xs)|FY

s

]
ds

]
= Φ0(i) +

∫ t

0

[
d∑
i=1

λjiΦs(j)

]
ds

+
1

B2

∫ t

0

Φs(i)g(ai)− Φs(i)
d∑
j=1

Φs(j)g(aj)

 ·
dYt −

∫ t

0

d∑
j=1

Φs(j)g(aj)ds

 .
In differential notation,

dΦt(i) =

[
d∑
i=1

λjiΦt(j)

]
dt

+
1

B2

Φt(i)g(ai)− Φt(i)
d∑
j=1

Φt(j)g(aj)


T dYt −

d∑
j=1

Φt(j)g(aj)dt

 .
Note that

∑d
i=1 λjiΦt(j) is the ith component of ΛTΦt, [Φt(i)g(ai)]

T is the ith row of
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diag(Φt)G, and
[
Φt(i)

∑d
j=1 Φt(j)g(aj)

]T
is the ith row of ΦtΦ

T
t G. In addition,

d∑
j=1

Φt(j)g(aj)dt = GTΦt.

As such, by aggregating the above equality for i = 1, . . . , d,

dΦt = ΛTΦtdt+
1

B2

[
diag(Φt)G−ΦtΦ

T
t G
] [
dYt −GTΦtdt

]
,

⇒ dΦt = ΛTΦtdt+
1

B2

[
diag(Φt)−ΦtΦ

T
t

]
G
[
dYt −GTΦtdt

]
,

as required.
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Chapter 4

The Regime-Switching Model with

Inside Information

4.1 The Regime-Switching Model for Two Assets

Consider a financial market model consisting of a bank account and one financial asset.

The bank account is assumed to pay a fixed interest rate r ≥ 0. As such, if an amount

A is deposited in the bank at time t1, the bank account will have a value of Ae(t2−t1) at

time t2 ≥ t1. The financial asset which an investor can invest in is a stock, whose price

process we will denote by (St)t≥0. We wish to analyze the dynamics of trading within this

framework.

In order for this framework to be plausible, we assume that at any time t, the investor

does not know what the stock price at time t′ is, for any t′ > t. An implication of this

assumption is that the paths of the stock price process must be non-differentiable. A

common way to do this is by modeling (St) as the solution of an SDE.

One of the simplest (and most widely used) models for a stock price process is geometric

Brownian motion. More explicitly, (St) is given as the solution of the SDE

dSt = µStdt+ σStdWt, S0 = x,

where µ is the mean return of the stock, σ is its volatility, x is the price of the stock at time

0 and W is a Wiener process. (Here, x, µ and σ are constant, x > 0 and σ ≥ 0.) Geometric

Brownian motion is commonly used because it fits historical data relatively well and it is

also easy to manipulate (in fact, there is an explicit expression for St).

Note that while it is relatively easy to analyze the stock price dynamics when geometric

Brownian motion is used, the geometric Brownian motion model makes certain assumptions

which may not be realistic (see Marathe & Ryan (37) for an in-depth analysis on the validity

of the geometric Brownian motion model.) One assumption that can be unrealistic is that

the expected growth rate µ of the stock is constant with time, i.e. ESt = eµtS0 for all values
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of t. Often it is more plausible to assume that the average growth rate of a stock is tied

to company-specific factors (e.g. which part of the business cycle the company is in), or

macroeconomic indicators. For example, we would generally expect the average growth rate

of the stock to be higher when the economy is doing well than when the economy is in a

recession. The geometric Brownian motion model does not account for such macroeconomic

conditions.

The regime-switching model is an adaptation of the geometric Brownian motion model

that fills in this gap. The volatility of the stock, σ, is still assumed to be constant with time.

However, the expected growth rate of the stock is no longer constant with time. Instead, it

is replaced by a stochastic process denoted by (µt)t≥0. The SDE governing the stock price

process in this model is

dSt = µtStdt+ σStdWt, S0 = x,

where x is again the price of the stock at time 0. It remains to define (µt)t≥0 to model the

assumptions we are making. Assume that there are d different “regimes”, or states of the

economy, which we label as 1, . . . , d (without loss of generality). Assume that the expected

growth rate of the stock when the economy is in the ith regime is ai. Lastly, assume that

the state in which the economy is in is modeled as a continuous-time Markov chain. As

such, the process (µt) is a continuous-time Markov chain with state space {a1, . . . , ad}.
Regime-switching models were introduced to model interest rates in Hamilton (22),

where it was found that the business cycle was characterized well by discrete shifts between

a recessionary state and a growth state. Ang & Bekaert (3) give a list of works which

examined empirical models of regime switches in interest rates. Hardy (23) found that the

regime-switching model provided a significantly better fit to the data from the Standard

and Poor’s 500 and the Toronto Stock Exchange 300 indices compared to other popular

models. For more information on the empirical results on regime switching models, see

Schaller & van Norden (46).

It is worth noting that the regime-switching model is an example of a continuous-time

hidden Markov model (HMM) (see Elliott et al. (16) for the general theory of HMMs).

4.2 Modeling Information on the Mean Return

Assume that we are in the regime-switching model set up in the previous section. It is

unrealistic to assume that an investor would choose how much to invest based solely on the

historical stock prices (i.e. the values of Su for u ≤ t). He would seek out as much news as

he could on the company and on the relevant factors (e.g. the economy) in order to have a

more accurate guess of µt before deciding on his portfolio at time t. (Note that the values

of µu for u < t are irrelevant as µ is a Markov chain.)

For the sake of simplicity, let us model this idea of added information by assuming that

the investor reads a newspaper which gives him an estimate of the stock’s mean return
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for every time t. From experience we know that no newspaper is able to give completely

accurate guesses all the time. As such, we can model this additional observation by

Y ′t =

∫ t

0
µsds+ εVt, ∀t ≥ 0,

where V is a Wiener process independent of W , and ε ≥ 0. In differential notation, the

equation above can be written as

dY ′t = µtdt+ εdVt, Y ′0 = 0.

Notice that we can model how accurate the newspaper’s estimate of the stock’s mean

return is by varying ε. More specifically, when ε = 0, we can determine µt for every t with

complete certainty. On the other hand, as ε→∞, the µ component in the signal above is

overpowered by the noise component, meaning that we approach the situation where the

investor has no information other than the historical stock prices.

Definition 4.2.1. An investor has complete information on µ if at any time t, he can

see the values of µ up till and including t.

An investor has inside information on µ if at any time t, he can see the values of S

and Y ′ up till and including t, and 0 < ε <∞.

An investor has partial information on µ if at any time t, he can only see the values

of S up till and including t.

It is worth noting that the case of “partial information on µ” is named as such because

we can estimate µ even if we only have the stock prices available to us. For instance, in the

case where σ = 0, the stock prices alone are enough to tell us what µ is at every time. The

case of “inside information on µ” is named as such to reflect the fact that the investor is

getting information on µ over and above what is available in the historical stock prices.

In some sense, the cases of complete information and partial information correspond to

the case of inside information with parameter ε = 0 and ε = ∞ respectively. These links

will be elaborated on for the special case of the regime-switching model limited to two states

in Section 6.7.

4.3 Trading Strategies

Assume that there is an underlying filtered probability space (Ω,F , {Ft},P) on which the

stock price process S is defined. Assume also that S is adapted to {Ft}.
Consider an investor with an initial endowment of V0 (which is a constant). If he has the

option of continuously trading in the financial market model set up above, what parameters

do we need to define in order to completely characterize his actions? At any time t, the

investor can rebalance his portfolio by determining how much money he is going to invest
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in the stock. He would then deposit the rest of his money in the bank account. One way to

characterize this is to specify the fraction of his wealth at time t which is invested in stock:

Definition 4.3.1. A trading strategy is a stochastic process p = (pt)t≥0, where pt denotes

the fraction of wealth invested in the stock at time t.

Note that p is not restricted to the interval [0, 1]. If pt < 0, it means that the investor

is selling the stock short. If pt > 1, it means that the investor is borrowing money from the

bank in order to buy an amount of stock that is worth more than his total wealth. (This

implies that in analyzing this set-up in future chapters, we assume that the investor can

borrow and lend at the same rate.) Notice also that we have defined a trading strategy as a

stochastic process and not as a deterministic process. This is because we want to allow for

dynamic strategies which depend not only on the data available to the investor and time

0, but also on the evolution of the financial market model which the investor sees before

making his investment decision.

The definition given above for a trading strategy is too wide in the sense that not all

stochastic processes would make sense as trading strategies. Take, for example, a stochastic

process p such that for some time t ≥ 0, pt ∈ FSt+1, but pt /∈ FSt . This means that at time

t, in deciding how much to invest in the stock the investor uses information from the stock

price in the time period (t, t+ 1]! This does not make sense: the future has not happened

yet, and so we cannot look into the future to make our current investment decision. (This

assumes that you do not have inside information of the type suggested by Pikovsky &

Karatzas (43), in which case you might have some idea of how the stock price might move

in the near future.)

In this light, valid trading strategies must have the property that for all times t ≥ 0,

pt can only depend on the information available to you during the time period [0, t]. As

such, p must be adapted to some filtration {Gt} that captures all the information up till the

current time. (For an explanation on how filtrations are related to information, see Section

4 of Chapter II in Cinlar (12).) Such a stochastic process is known as a non-anticipating

process.

At this point, we will not specify the filtration {Gt} explicitly: in future chapters this

filtration will change across different cases. We will define the filtration which p is adapted

to in those cases for clarity’s sake. However, to ensure that the wealth of the portfolio does

not “explode” to infinity at any time, we will impose the following condition: over a finite

time horizon [0, T ], the investment strategy p must be an element of H2[0, T ]. We will only

deal with finite time horizons in this thesis.

For the remaining chapters, we will use the following updated definition for trading

strategies:

Definition 4.3.2. Let {Gt} be a sub-filtration of F such that for all times t, Gt repre-

sents the information available to the investor at time t. Let p = (pt)t≥0 be a stochastic
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process such that pt denotes the fraction of wealth invested in the stock at time t. p is a

trading strategy on [0, T ] if p is measurable and adapted to {Gt}, and p ∈ H2[0, T ].

38



Chapter 5

Deriving the Utility-Maximizing

Trading Strategy

In this chapter, we formulate the concept of the log-optimal wealth process. By deriving

an expression for the log of the wealth process in terms of the stock price process and the

trading strategy, we will obtain explicit expressions for the trading strategy that optimizes

the expected log-utility of the wealth process. We will also derive expressions for the greatest

possible expected log-utility of the wealth process and long-run discounted growth rate.

As before, assume that there is an underlying filtered probability space (Ω,F , {Ft},P).

5.1 The Wealth Process and Expected Logarithmic Utility

When trading in a financial market, an investor is primarily interested in his total wealth.

A rational investor would seek to maximize the expected utility that he gains from this

wealth. To this end, introduce the stochastic process V = (Vt)t≥0, where Vt denotes the

investor’s wealth, or the value of the portfolio, at time t. V is called the wealth process.

The goal of an investor would then be to maximize E[U(VT )] for some terminal time T ,

where U is some utility function.

Often, it is useful to discount prices by the risk-free asset. One simple strategy for

investing in the market is by placing the entire initial endowment V0 in the bank account

that pays interest at a fixed rate r at time 0. At a terminal time T , the investor would

have a wealth of V0e
rT without incurring any risk. In some sense this strategy should be

the benchmark against which all other strategies are measured: a strategy that consistently

does worse than this riskless strategy should never be employed. As such, it is natural to

measure how well a trading strategy does, not by looking at the nominal values of portfolios,

but by comparing it to the riskless trading strategy just mentioned. With this in mind, we

introduce the discounted version of a stochastic process:

Definition 5.1.1. Let X = (Xt)t≥0 be some price or wealth process. Assume that the bank
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account offers a fixed interest rate r. The discounted price or wealth process, denoted

by X̄, is given by X̄t := Xte
−rt for all t.

In this thesis, we will consider the “normalized” expected utilities E
[
U(V̄T )

]
rather than

the nominal expected utilities E [U(VT )].

In economic theory, in order for the concept of utility to be realistic, the utility function

U must satisfy certain basic conditions (see Section 3.4 of Karatzas & Shreve (31)). In

this thesis, we will not consider the general utility function, but rather logarithmic utility

(log-utility), given by

U(V̄T ) := log V̄T .

The idea of using the logarithm as a utility function was first posited by Bernoulli in

1738 (Bernoulli (7)). Bernoulli argued that it is reasonable to expect that the utility an

investor gains from an increase in his wealth is inversely proportional to his original wealth.

This condition leads to the conclusion that utility is proportional to the log of wealth. The

logarithmic utility function can also be seen as an example of the Weber-Fechner law, which

states that a wide variety of stimuli are perceived on a logarithmic scale.

The use of the logarithmic utility function is supported not just by psychological ev-

idence, but also by some of its mathematical properties. Thorp (53) showed that in a

financial market model, by maximizing logarithmic utility, an investor could asymptotically

maximize the growth rate of his assets. Bell & Cover (5) showed that in certain set-ups, the

expected log-optimal portfolio is also game-theoretically optimal in a single play or multiple

plays of the stock market. Goll & Kallsen (20) also note that when using the logarithmic

utility function, optimal solutions can be explicitly calculated for general dynamic models.

Definition 5.1.2. Let T ≥ 0 be a given terminal time. A wealth process V ∗ is called a

log-optimal wealth process if it maximizes expected log-utility, i.e. for all possible wealth

processes V ,

E log V̄T ≤ E log V̄ ∗T .

A trading strategy is said to be log-optimal if the wealth process associated with it is log-

optimal.

We end this section with a definition of the long-run discounted growth rate of a wealth

process.

Definition 5.1.3. Given a wealth process V = (VT )T≥0, define the long-run discounted

growth rate of the wealth process as

γ(V ) := lim
T→∞

1

T
E
[
log V̄T

]
,

if the limit exists.
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The intuition for the definition above is as follows: if a discounted wealth process has a

long-run growth rate of r, then V̄T should look like V0e
rT for terminal times that are large

enough. The definition above captures this idea in a precise manner.

5.2 The Relationship between the Wealth and Stock Price

Processes

Chen (10) presents a similar derivation of the following proposition:

Proposition 5.2.1. Let S be the stock price process, p a trading strategy. Let V be the

wealth process associated with p. Then for any terminal time T,∫ T

0

1

V̄t
dV̄t =

∫ T

0

pt
S̄t
dS̄t,

if the integral on the right hand side exists. Equivalently, we can write

dV̄T
V̄T

= pT
dS̄T
S̄T

.

Proof. Fix a terminal time T ≥ 0, let k ∈ N be fixed. Partition the time interval [0, T ] into

N = 2k (k ∈ N) intervals of equal length: define TN,i = T i
N for i = 0, 1, . . . , N . Consider

the discrete trading strategy where you rebalance your portfolio only at times TN,i for

i = 0, 1, . . . , N , according to the strategy p. For any i = 1, . . . , N , the table below shows

the amount invested in each asset at time TN,i−1, and the value of each component of the

portfolio at time TN,i before rebalancing:

Value of bank account Value of stock component

After rebalancing at TN,i−1 (1− pTN,i−1
)VTN,i−1

pTN,i−1
VTN,i−1

Before rebalancing at TN,i (1− pTN,i−1
)VTN,i−1

eTN,i−TN,i−1 pTN,i−1
VTN,i−1

STN,i
STN,i−1

As such, for this trading strategy,

VTN,i = (1− pTN,i−1
)VTN,i−1

eTN,i−TN,i−1 + pTN,i−1
VTN,i−1

STN,i
STN,i−1

,

VTN,i
VTN,i−1

= (1− pTN,i−1
)eTN,i−TN,i−1 + pTN,i−1

STN,i
STN,i−1

,

V̄TN,ie
TN,i

V̄TN,i−1
eTN,i−1

= (1− pTN,i−1
)eTN,i−TN,i−1 + pTN,i−1

S̄TN,ie
TN,i

S̄TN,i−1
eTN,i−1

,

V̄TN,i
V̄TN,i−1

= 1− pTN,i−1
+ pTN,i−1

S̄TN,i
S̄TN,i−1

,

V̄TN,i − V̄TN,i−1

V̄TN,i−1

= pTN,i−1

S̄TN,i − S̄TN,i−1

S̄TN,i−1

.
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As this relation holds for all i = 1, . . . , N , summing them up, we get

N∑
i=1

V̄TN,i − V̄TN,i−1

V̄TN,i−1

=

N∑
i=1

pTN,i−1

S̄TN,i − S̄TN,i−1

S̄TN,i−1

.

Taking N →∞ and using Theorem 2.2.6,

∫ T

0

1

V̄t
dV̄t = lim

N→∞

N∑
i=1

1

V̄TN,i−1

(
V̄TN,i − V̄TN,i−1

)
= lim

N→∞

N∑
i=1

pTN,i−1

S̄TN,i−1

(
S̄TN,i − S̄TN,i−1

)
=

∫ T

0

pt
S̄t
dS̄t.

Note that Proposition 5.2.1 holds for all stock price processes. The following proposition

gives us the expected log-utility for the wealth process associated with a general trading

strategy under the regime-switching model.

Proposition 5.2.2. Let the stock price process be given by dSt = µtStdt + σStdWt, with

the assumption that µ is bounded, i.e. there exists a constant M such that |µt(ω)| < M for

all t ∈ R+, ω ∈ Ω. Fix the terminal time T . Then, for any trading strategy p ∈ H2[0, T ],

E log V̄T = log V̄0 +

∫ T

0
E
[
(µt − r)pt −

1

2
σ2p2

t

]
dt. (5.1)

Proof. Consider the discounted stock price process (S̄t)t≥0. Using Itô’s formula for the

function f(t, x) = e−rtx:

dS̄t = df(t, St)

= −re−rtStdt+ e−rtdSt + 0

= −rS̄tdt+ e−rt(µtStdt+ σStdWt),

Hence,

dS̄t = (µt − r)S̄tdt+ σS̄tdWt. (5.2)

By equation (5.2), (dS̄t)
2 = σ2S̄2

t dt for all t. Using Itô’s formula for the function

f(t, x) = log x,

d(log V̄T ) = 0 +
1

V̄T
dV̄T +

1

2

(
− 1

V̄ 2
T

)
(dV̄T )2

=
dV̄T
V̄T
− 1

2

(
dV̄T
V̄T

)2
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= pT
dS̄T
S̄T
− 1

2
p2
T

(
dS̄T
S̄T

)2

(by Prop 5.2.1)

= pT [(µT − r)dT + σdWT ]− 1

2
p2
T

σ2S̄2
TdT

S̄2
T

=

[
pT (µT − r)−

1

2
p2
Tσ

2

]
dT + pTσdWT ,

i.e.

∫ T

0
d(log V̄t) =

∫ T

0

[
pt(µt − r)−

1

2
p2
tσ

2

]
dt+

∫ T

0
ptσdWt,

log V̄T = log V̄0 +

∫ T

0

[
pt(µt − r)−

1

2
p2
tσ

2

]
dt+

∫ T

0
ptσdWt.

Note that p ∈ H2[0, T ]⇒ σp ∈ H2[0, T ] for any constant σ ∈ R. As such,

E log V̄T = log V̄0 + E
[∫ T

0
pt(µt − r)−

1

2
p2
tσ

2dt

]
+ E

[∫ T

0
ptσdWt

]
= log V̄0 + E

[∫ T

0
pt(µt − r)−

1

2
p2
tσ

2dt

]
. (by Prop 2.2.3)

It remains to show that we can switch the integral sign and the expectation sign for the

second term on the right hand side above. By Fubini’s theorem, it suffices to show that

E
[∫ T

0

∣∣∣pt(µt − r)− 1

2
p2
tσ

2
∣∣∣dt] <∞.

Consider p as a function p : (Ω × [0, T ],F ⊗ B[0, T ],P × Q) 7→ R, where Q is the uniform

measure on [0, T ]. (Note that p is a measurable function.) Then

[
E

1

T

∫ T

0
|pt|dt

]2

=
{

(P×Q)|p|
}2

≤ (P×Q)
[
p2
]

(by Jensen’s inequality)

= E
[

1

T

∫ T

0
|pt|2dt

]
.

As such,

E
[∫ T

0

∣∣∣pt(µt − r)− 1

2
p2
tσ

2
∣∣∣dt] ≤ E

[∫ T

0
|pt(µt − r)|dt

]
+
σ2

2
E
[∫ T

0
|pt|2dt

]
≤
(
|M |+ |r|

)
TE
[

1

T

∫ T

0
|pt|dt

]
+
σ2

2
E
[∫ T

0
|pt|2dt

]
(as µ is bounded)

≤
(
|M |+ |r|

)
T

{
E
[

1

T

∫ T

0
|pt|2dt

]} 1
2

+
σ2

2
E
[∫ T

0
|pt|2dt

]
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=
(
|M |+ |r|

)√
T

{
E
[∫ T

0
|pt|2dt

]} 1
2

+
σ2

2
E
[∫ T

0
|pt|2dt

]
<∞. (as p ∈ H2[0, T ])

This concludes the proof.

The proposition below gives an explicit expression for the trading strategy which max-

imizes the expected log-utility of the wealth process.

Proposition 5.2.3. Consider the setup of Proposition 5.2.2. Let {Gt} be a filtration on Ω

such that for every time t, Gt ⊂ Ft. Fix a terminal time T . Then, among admissible trading

strategies which are adapted to {Gt}, the trading strategy which maximizes the expected log-

utility of the wealth process is given by

p∗t =
{E [µt|Gt]− r}

σ2
, ∀t ∈ [0, T ].

Proof. For each ω ∈ Ω, consider the function

ft,ω(x) = {E [µt|Gt] (ω)− r}x− 1

2
σ2x2, x ∈ R.

ft,ω is an inverted parabola, and so if x∗ is the value in R that maximizes ft,ω, then

f ′t,ω(x∗) = 0,

⇒ {E [µt|Gt] (ω)− r} − σ2x∗ = 0,

⇒ x∗ =
{E [µt|Gt] (ω)− r}

σ2

= p∗t (ω).

Hence, p∗t (ω) maximizes ft,ω. By equation (5.1), for all p adapted to {Gt},

E[U(V̄T )]− log V̄0 =

∫ T

0
E
[
(µt − r)pt −

1

2
σ2p2

t

]
dt

=

∫ T

0
E
{
E
[
(µt − r)pt −

1

2
σ2p2

t

∣∣∣Gt]} dt
=

∫ T

0

∫
Ω

(
E[µt|Gt](ω)− r

)
pt(ω)− 1

2
σ2pt(ω)2dPdt

(as pt is Gt-measurable)

=

∫ T

0

∫
Ω
ft,ω[pt(ω)]dPdt.
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For all p adapted to {Gt},

ft,ω[pt(ω)] ≤ ft,ω[p∗t (ω)] ∀ω ∈ Ω, t ∈ [0, T ],

⇒
∫

Ω
ft,ω[pt(ω)]dP ≤

∫
Ω
ft,ω[p∗t (ω)]dP ∀t ∈ [0, T ],

(by the monotonicity of the integral)

⇒
∫ T

0

∫
Ω
ft,ω[pt(ω)]dPdt ≤

∫ T

0

∫
Ω
ft,ω[p∗t (ω)]dPdt. (same reasoning)

Thus, the trading strategy p∗ gives an expected log-utility which is greater than or equal

than that given by any trading strategy which is adapted to Gt. It remains to show that p∗

is adapted to {Gt}, and that p∗ ∈ H2[0, T ].

As E[µt|Gt] is in Gt by definition, and r and σ are constants, it follows that p∗t is Gt-
measurable for all t. From this, it is also clear that p∗ is measurable w.r.t. F and is adapted

to {Ft}. Finally, as µ is a bounded process,

E
[∫ T

0
(p∗t )

2dt

]
= E

[∫ T

0

{E [µt|Gt]− r}2

σ4
dt

]

≤ E

[∫ T

0

{|E [µt|Gt]|+ r}2

σ4
dt

]

≤ E

[∫ T

0

{M + r}2

σ4
dt

]

=
T (M + r)2

σ4
<∞.

Thus, p∗ is indeed an admissible strategy which is adapted to {Gt}.

Proposition 5.2.3 has two important implications. First, for a fixed terminal time, the

trading strategy which maximizes the expected-log utility at the terminal time is unique.

Second, note that for each time t, p∗t depends only on the estimate of µt. For any two

terminal times 0 ≤ T1 ≤ T2, let (p∗t )t∈[0,T1] and (q∗t )t∈[0,T2] be the log-optimal trading

strategies associated with T1 and T2 respectively. Then p∗ is the restriction of q∗ to the

time interval [0, T1]. This means that in maximizing his expected log-utility an investor can

be “myopic”: his trading strategy and any point in time does not depend on the terminal

time.

The following corollary gives an explicit expression for the value and the long-run dis-

counted growth rate of the log-optimal wealth process.

Corollary 5.2.4. Under the set-up of Proposition 5.2.3, the value of the log-optimal wealth
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process, when the information at time t is given by the σ-algebra Gt, is

E log V̄ ∗T = log V̄0 +
1

2σ2

∫ T

0
E
{(

E[µt|Gt]− r
)2}

dt, (5.3)

and the long-run discounted growth rate of this wealth process is

γ(V ∗) = lim
T→∞

E
[

1

2σ2T

∫ T

0

(
E[µt|Gt]− r

)2
dt

]
. (5.4)

Proof. The expression for E log V̄ ∗T can be obtained directly by substituting p∗ into equation

(5.1). The expression for γ(V ∗) can be derived by dividing both sides of equation (5.3) by

T , applying the limit T → ∞, and using Fubini’s theorem to switch the integral and the

expectation. (Fubini’s theorem applies due to the boundedness of µ.)

Proposition 5.2.3 and Corollary 5.2.4 imply that in order to find the value of the log-

optimal wealth process along with the trading strategy that obtains this value when infor-

mation at time t is given by Gt, it is sufficient to determine E[µt|Gt]. This will be the subject

of the next chapter.
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Chapter 6

Analysis of the Regime-Switching

Model with Two States

In this chapter, we will apply results of stochastic filtering theory to obtain a method for

determining the investment strategy that optimizes expected log-utility, and an expression

for the growth rate of the log-optimal wealth process. We will consider three cases: when

we have complete information on µ, partial information on µ and inside information on µ.

For each case, after discussing the method for determining the filter for µ, we will calculate

the long-run discounted growth rate of the log-optimal wealth process. In addition, we

will show weak convergence of measures which demonstrate that the cases of complete and

partial information can be viewed as special cases of the case of inside information. We will

end this chapter with an analysis of the long-run discounted growth rate of the log-optimal

wealth process.

Based on Proposition 5.2.3 and Corollary 5.2.4, determining the optimal investment

strategy amounts to determining E[µt|Gt] for each time t, where µt is the expected growth

rate of the stock at time t, and Gt is the filtration representing the information available at

time t. It is clear that an application of the Shiryaev-Wonham filter (Theorem 3.4.1) gives

a system of SDEs for P{µt = ai|Gt} for each state ai. From such a system of SDEs, given

information Gt, we can use numerical approximation techniques to obtain an estimate for

P{µt = ai|Gt} for all i, which in turn gives us an estimate for E[µt | Gt].
We do not know how to obtain closed-form solutions for any analysis on this general

regime-switching model. However, when the expected growth rate of the stock (µt) is limited

to two states, we can obtain some explicit expressions.

6.1 Setting up the Model

To orient ourselves, we will now set up the parts of the regime-switching model that will be

used throughout this chapter. Fix some terminal time T . Let the interest rate of the bank
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account be fixed at r. Let the stock price process St be governed by the following SDE:

dSt = µtStdt+ σStdWt, S0 = x,

where W is a Wiener process, and x is the stock price at time 0. Let the expected

growth rate of the stock µ be modeled as a two-state continuous-time Markov chain with

states {a, b} such that a > b, and transition intensities matrix

Λ =

[
−λb λb

λa −λa

]
, λa, λb > 0.

We have assumed that λa and λb are both strictly positive so as to ensure that the

Markov chain µ is irreducible and recurrent. We are not losing much by making this

assumption: if both λ’s were 0, µ would be constant with time. If only one of the λ’s was

non-zero, after an almost-surely finite amount of time t, we would have µs = µt for all

s ≥ t. Both these cases are not very interesting in terms of ergodic theory— the solutions

are obvious.

In order for the filtering results of Chapter 3 to be applicable in our model, instead of

using the stock price process S as the observation process, we will use Y given by Yt := logSt.

Using Itô’s formula, we have

Y0 = log x, dYt =
1

St
dSt −

1

2

1

S2
t

(dSt)
2

= (µtdt+ σdWt)−
1

2

1

S2
t

σ2S2
t dt

=

(
µt −

σ2

2

)
dt+ σdWt.

As the Markov chain has only two states, it means that P{µt = a|Gt}+P{µt = b|Gt} = 1

for all t. As such, by defining φt = P{µt = a|Gt}, we will be able to determine the filter for

µ w.r.t. {Gt} from the process φ. More specifically, for all t,

E [µt|Gt] = aP{µt = a|Gt}+ bP{µt = b|Gt}

= aφt + b(1− φt)

= b+ (a− b)φt.

Finally, note that in the notation of Section 3.4, we have

Φt :=

[
P{µt = a | Gt}
P{µt = b | Gt}

]
=

[
φt

1− φt

]
,

48



and

diag(Φt)−ΦtΦ
T
t =

[
φt 0

0 1− φt

]
−

[
φ2
t φt(1− φt)

φt(1− φt) (1− φt)2

]

=

[
φt(1− φt) −φt(1− φt)
−φt(1− φt) (1− φt) [1− (1− φt)]

]

= φt(1− φt)

[
1 −1

−1 1

]
.

6.2 Complete Information on µ

In this case, at time t, we know exactly which state µs is in for every time s ∈ [0, t]. Using

Proposition 5.2.3 and Corollary 5.2.4, we know that the log-optimal trading strategy is

given by

p∗t =
µt − r
σ2

, ∀t,

and that this trading strategy gives a log-optimal utility of

E log V̄ ∗T = log V̄0 +
1

2σ2

∫ T

0
E
[
(µt − r)2

]
dt.

Corollary 5.2.4 also gives an expression for the long-run discounted growth rate of the

log-optimal wealth process:

γ(V ∗) =
1

2σ2
lim
T→∞

E
[

1

T

∫ T

0
(µt − r)2dt

]
=

1

2σ2
E
[

lim
T→∞

1

T

∫ T

0
(µt − r)2dt

]
(by the bounded convergence theorem)

=
1

2σ2

λa(a− r)2 + λb(b− r)2

λa + λb
. (by Thm 2.4.5)

6.3 Partial Information on µ

In this case, the only information available at time t is the stock prices up till time t (time

t included). Applying the Shiryaev-Wonham filter (equation (3.10)) to the signal process µ

with observation process Y :

[
dφt

1− dφt

]
=

[
−λb λa

λb −λa

][
φt

1− φt

]
dt+

1

σ2
φt(1− φt)

[
1 −1

−1 1

]

×

[
a− σ2

2

b− σ2

2

] [
dYt −

(
a− σ2

2

)
φtdt−

(
b− σ2

2

)
(1− φt)dt

]
,
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dφt = [−λbφt + λa(1− φt)] dt+
φt(1− φt)

σ2

[(
a− σ2

2

)
−
(
b− σ2

2

)]
×
[
dYt −

(
(a− b)φt + b− σ2

2

)
dt

]
,

Hence,

dφt = [λa − (λa + λb)φt] dt+
(a− b)φt(1− φt)

σ2

×
[
dYt −

(
(a− b)φt + b− σ2

2

)
dt

]
. (6.1)

In practice, one would obtain stock price data from the stock market. One can then

use approximating techniques such as Euler’s method to obtain an estimate of φt, which

would allow one to trade according to the strategy given in Proposition 5.2.3. To estimate

the distribution φt, one can use Monte Carlo simulation. For each iteration, one would use

approximating techniques to obtain sample paths of Y and φ, from which we can obtain

a value of φt. Averaging over many sample paths, one would obtain an estimate for φt’s

distribution.

We now derive an expression for the invariant probability measure for φ, which is needed

to obtain an explicit expression for the long-run discounted growth rate of the log-optimal

wealth process. By Proposition 3.3.8,
[
Yt −

∫ t
0

(
(a− b)φs + b− σ2

2

)
ds
]

is a Wiener process.

As such, we can write equation (6.1) as

dφt = [λa − (λa + λb)φt] dt+
(a− b)φt(1− φt)

σ2
dBt,

where B is a Wiener process.

Claim 6.3.1. The process φ satisfies the conditions of Theorem 2.4.2.

While the proof of Claim 6.3.1 is rather technical, we provide it here because the proof

has significant overlap with the calculations for the invariant probability measure associated

with φ.

Proof. As φt = P{µt = a|FYt } for all t, it is clear that φ must take on values in [0, 1]. Using

the notation of Theorem 2.4.2, define functions f and g by

f(x) = λa − (λa + λb)x,

g(x) =
(a− b)x(1− x)

σ2
.

From these definitions it is clear that f and g are continuous, and that g(x) = 0 if and

only if x = 0, 1.
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Let a = 0.5. Note that by partial fractions,

λa − (λa + λb)y

y2(1− y)2
=
λa − λb

y
+
λa
y2

+
λa − λb
1− y

− λb
(1− y)2

.

As such,∫ x

0.5

2f(y)

g2(y)
dy =

2σ4

(a− b)2

∫ x

0.5

λa − (λa + λb)y

y2(1− y)2
dy

=
2σ4

(a− b)2

[
(λa − λb) log y − λa

y
− (λa − λb) log(1− y)− λb

1− y

]x
0.5

=
2σ4

(a− b)2

[
(λa − λb) log

(
x

1− x

)
−
(
λa
x

+
λb

1− x

)
− c2

]
,

where c2 is some constant. In particular,∫ 1

0.5

2f(y)

g2(y)
dy = lim

x→1

2σ4

(a− b)2

[
(λa − λb) log

(
x

1− x

)
−
(
λa
x

+
λb

1− x

)
− c2

]
= c3 +

2σ4

(a− b)2
lim
x→1

[
(λa − λb) log

(
x

1− x

)
− λb

1− x

]
(c3 some constant)

= c3 +
2σ4

(a− b)2
lim
x→0

[
(λa − λb) log

(
1− x
x

)
− λb

x

]
= c3 +

2σ4

(a− b)2
lim
x→∞

[(λa − λb) log (x− 1)− λbx] = −∞,

as required. It remains to show that

0 <

∫ 1

0

1

g2(x)
exp

{∫ x

0.5

2f(y)

g2(y)
dy

}
dx <∞,

⇔ 0 <

∫ 1

0

c

x2(1− x)2

(
x

1− x

)2c(λa−λb)
exp

[
−2c

(
λa
x

+
λb

1− x

)]
dx <∞

⇔ 0 <

∫ 1

0

c

x2(1− x)2

(
x

1− x

)2c(λa−λb)
exp

[
−2c [λa − (λa − λb)x]

x(1− x)

]
dx <∞,

where c = σ4

(a−b)2 . As the integrand is always non-negative, continuous on (0, 1) and strictly

positive on
[

1
3 ,

2
3

]
, the first inequality obviously holds. The rest of the proof will focus on

the finiteness of the integral. Denoting the integrand by h, for y = 0, 1, define h(y) =

limx→y h(x). It then remains to show that h(0) and h(1) are finite. (Assuming that these

two limits are finite, h : [0, 1] 7→ R is a continuous function on [0, 1], hence it maps to

compact set [0, 1] to a bounded set in R, which would imply the finiteness of the integral.)

In fact, we will show that h(0) = h(1) = 0.
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Case 1: λa = λb. By symmetry, h(1) = h(0) = limx→0
c

x2(1−x)2
exp

[
− 2cλa
x(1−x)

]
. Then,

0 ≤ lim
x→0

c

x2(1− x)2
exp

[
− 2cλa
x(1− x)

]
= lim

x→0

c

(1− x)2
lim
x→0

1

x2
exp

[
− 2cλa
x(1− x)

]
≤ c lim

x→0

1

x2
exp

[
−2cλa

x

]
= c lim

x→∞
x2 exp [−2cλax] = 0.

Case 2: λa > λb.

0 ≤ lim
x→0

c

x2(1− x)2

(
x

1− x

)2c(λa−λb)
exp

[
−2c [λa − (λa − λb)x]

x(1− x)

]
= lim

x→0

c

(1− x)2c(λa−λb)+2
lim
x→0

x2c(λa−λb)−2 exp

[
−2c [λa − (λa − λb)x]

x(1− x)

]
≤ c lim

x→0
x2c(λa−λb)−2 exp

[
−2c [λa − (λa − λb)x]

x

]
= c exp [2c(λa − λb)] lim

x→∞
x2−2c(λa−λb) exp[−2cλax] = 0,

and

0 ≤ lim
x→1

c

x2(1− x)2

(
x

1− x

)2c(λa−λb)
exp

[
−2c [λa − (λa − λb)x]

x(1− x)

]
= lim

x→0

c

x2(1− x)2

(
1− x
x

)2c(λa−λb)
exp

[
−2c [λa − (λa − λb)(1− x)]

x(1− x)

]
= lim

x→0
c(1− x)2c(λa−λb)−2 lim

x→0
x−2c(λa−λb)−2 exp

[
−2c [λb + (λa − λb)x]

x(1− x)

]
≤ c lim

x→0
x−2c(λa−λb)−2 exp

[
−2c [λb + (λa − λb)x]

x

]
= c exp [2c(λb − λa)] lim

x→∞
x2c(λa−λb)+2 exp[−2cλbx] = 0.

Case 3: λa < λb. By the relations

lim
x→0,1

c

x2(1− x)2

(
x

1− x

)2c(λa−λb)
exp

[
−2c [λa − (λa − λb)x]

x(1− x)

]
= lim

x→1,0

c

x2(1− x)2

(
x

1− x

)2c(λb−λa)

exp

[
−2c [λb − (λb − λa)x]

x(1− x)

]
,

case 3 reduces to case 2. This completes the proof.

With Claim 6.3.1, we can apply Theorem 2.4.2 to φ: Let π be the density associated

52



with the invariant probability measure for φ. Then

π(x) =
c1σ

4

(a− b)2x2(1− x)2
exp

[∫ x

0.5

2σ4 [λa − (λa + λb)y]

(a− b)2y2(1− y)2
dy

]
, (6.2)

where c1 is the normalization constant such that
∫
π(x)dx = 1. Using the working in Claim

6.3.1, we have the following:

Proposition 6.3.2. (Invariant probability measure for φ.) In the case of partial informa-

tion on µ, let φ be the process defined by φt = P{µt = a|FYt }. Then the invariant probability

measure of φ has a density π, which is given by

π(x) = Nh(x) =
Nc

x2(1− x)2

(
x

1− x

)2c(λa−λb)
exp

[
−2c [λa − (λa − λb)x]

x(1− x)

]
,

where c = σ4

(a−b)2 , and

1

N
=

∫ 1

0

c

x2(1− x)2

(
x

1− x

)2c(λa−λb)
exp

[
−2c [λa − (λa − λb)x]

x(1− x)

]
dx.

As h(0) = h(1) = 0, π is a continuous, bounded function on [0, 1] which takes on the

value 0 at the endpoints.

We will not derive the long-run discounted growth rate of the log-optimal wealth process

at this point. Instead, we will develop certain results that will allow us to obtain this value

as a simple corollary in Section 6.7.

6.4 Inside Information on µ

In this case, at time t, we know the values of Su and Y ′u for u ≤ t, where Y ′ is given by

dY ′t = µtdt+ εdVt, Y ′0 = 0,

where V is a Wiener process which is independent of W , and ε > 0.

In order to use the filtering tools developed in Chapter 3, it will be more convenient to

use

dY ′′t =
σµt
ε
dt+ σdVt, Y ′′0 = 0,

as the second observation process available to us (this is just a scaled version of Y ′). Using

the notation of Chapter 3, we have

Xt = µt, Yt =

[
Yt

Y ′′t

]
,
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g(µt) =

[
µt − σ2

2
σµt
ε

]
, G =

[
a− σ2

2
σa
ε

b− σ2

2
σb
ε

]
,

Wt =

[
Wt

Vt

]
, B = σ.

Let φεt = P{µt = a|FY
t }. We can then apply the Shiryaev-Wonham filter:[

dφεt

1− dφεt

]
=

[
−λb λa

λb −λa

][
φεt

1− φεt

]
dt+

1

σ2
φεt (1− φεt )

[
1 −1

−1 1

]

×

[
a− σ2

2
σa
ε

b− σ2

2
σb
ε

]{[
dYt

dY
′′
t

]
−

[
a− σ2

2 b− σ2

2
σa
ε

σb
ε

][
φεt

1− φεt

]
dt

}
,

dφεt = [−λbφεt + λa(1− φεt )] dt+
φεt (1− φεt )

σ2

[
a− b σ(a−b)

ε

]
×

[
dYt −

(
a− σ2

2

)
φεtdt−

(
b− σ2

2

)
(1− φεt )dt

dY
′′
t − σa

ε φ
ε
tdt− σb

ε (1− φεt )dt

]

= [λa − (λa + λb)φ
ε
t ] dt+

(a− b)φεt (1− φεt )
σ2

×
{[
dYt −

(
(a− b)φεt + b− σ2

2

)
dt

]
+
σ

ε

[
dY

′′
t −

(
σ(a− b)

ε
φεt +

σb

ε

)
dt

]}
.

(6.3)

As in the previous section, in reality one would have one sample path of each of Y and

Y ′′. Running Euler’s method would give one an estimate for φε. One could also use Monte

Carlo simulation to obtain an estimate of the distribution of φεt for each t.

We will now derive an expression for the invariant probability measure for φε. By

Proposition 3.3.8,
[
Yt −

∫ t
0

(
(a− b)φεs + b− σ2

2

)
ds
]

and
[
Y
′′
t −

∫ t
0

(
σ(a−b)

ε φεs + σb
ε

)
ds
]

are

independent Wiener processes. As such, we can write equation (6.3) as

dφεt = [λa − (λa + λb)φ
ε
t ] dt+

(a− b)φεt (1− φεt )
σ2

√
1 +

σ2

ε2
dBt,

where B is a Wiener process. Let c = σ4

(a−b)2 (as in the previous section), and let d(ε) =

ε2

ε2+σ2 . By modifying the proof of Claim 6.3.1 by replacing c with cd(ε), in the case of partial

information on µ, φε still satisfies the conditions of Theorem 2.4.2. As such, letting πε be

the density associated by the invariant probability measure for φε, Theorem 2.4.2 gives

πε(x) =
c′1ε

2σ4

(a− b)2x2(1− x)2(ε2 + σ2)
exp

[∫ x

0.5

2ε2σ4 [λa − (λa + λb)y]

(a− b)2y2(1− y)2(ε2 + σ2)
dy

]
, (6.4)

where c′1 is the normalization constant. By calculations identical to those in Section 6.3,
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we have the following result:

Proposition 6.4.1. (Invariant probability measure for φε.) In the case of inside informa-

tion on µ with parameter ε, let φε be the process defined as φεt = P{µt = a|FY
t }. Then the

invariant probability measure of φε has a density πε, which is given by

πε(x) =
Nεcd(ε)

x2(1− x)2

(
x

1− x

)2cd(ε)(λa−λb)
exp

[
−2cd(ε) [λa − (λa − λb)x]

x(1− x)

]
,

where

1

Nε
=

∫ 1

0

cd(ε)

x2(1− x)2

(
x

1− x

)2cd(ε)(λa−λb)
exp

[
−2cd(ε) [λa − (λa − λb)x]

x(1− x)

]
dx.

As with the previous section, πε is a continuous, bounded function on [0, 1] which takes

on the value 0 at the endpoints.

Note that πε is very similar to π. In fact, it is π with c replaced with cd(ε).

We will end this section with a result that, while somewhat technical, will be very useful

in the next two sections.

Proposition 6.4.2. (See page 248 of Stratonovich (52).) For any ε > 0,∫ 1

0
x(1− x)πε(x)dx =

Kq(Λ)

2Kq(Λ) +
√

λa
λb
K1+q(Λ) +

√
λb
λa
K1−q(Λ)

,

where N = 4cd(ε), Λ = N
√
λaλb, q = N

2 (λa−λb), and K is the modified Bessel function of

the second kind.

Proof. The proof involves a few change of variables and some manipulation of integrals. For

a complete proof, see page 69 in the Appendix.

6.5 Intuition behind the Stationary Distributions

In this section, we present plots of the stationary distributions of φ and φε, and explain the

intuition behind the shapes of plots we see.

First, we look at the stationary distribution of φ in the case of partial information on

µ. The plots on the next page show the stationary distribution of φ for different values of

σ, when a = 0.3, b = 0.1, and λa = λb = 1:
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Recall that φt = P
{
µt = a|FYt

}
. When σ is big, it means that the volatility of the stock

is so great that it becomes difficult to tell which state µ is in. As such, in the case where

λa = λb, our best guess of the probability that µ is in state a is 0.5. This can be seen in

the plots: for bigger values of σ the stationary distribution of φ becomes a spike centered

at 0.5. As σ becomes smaller, it means that the stock price process becomes less and less

volatile. This means that at any point in time it should become easier to tell which state

µ is in because a change in state will not be obscured by the volatility. We see this in the

plots as well: as σ becomes smaller, the stationary distribution becomes more and more

like two spikes of equal height at 0 and 1.

In the case where λa 6= λb, the reasoning in the paragraph above still holds. The

difference is that when σ becomes big, our best guess of the probability that µ is in state a

is only informed by the rates of the Markov chain, i.e. P
{
µt = a|FYt

}
= λa

λa+λb
. We can see

this in the figures on the next page, where a = 0.3, b = 0.1, λa = 2 and λb = 1. When σ is

big, the spike is centered around 2
3 , as expected. When σ is small, we have the two spikes

at 0 and 1, with the spike at 0 being shorter than that at 1.
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Next, we consider the case of inside information. When the parameter ε is big, it

means that the additional observation the insider has is basically just noise. As such, we

would expect the stationary distribution of φε to be much like that in the case of partial

information. As ε becomes smaller, the additional observation tells the insider which state

µ is in with greater certainty. This implies that as ε goes to zero, the stationary distribution

of φ should become two spikes centered at 0 and 1, such that the ratio of their heights is

given by λb/λa .

The plots confirm the intuition in the paragraph above. We demonstrate the properties

above in two different cases. For the first row of figures on the next page, a = 0.5, b = 0.2, σ

is at a relatively high value of 0.7, λa = 1 and λb = 2. The first figure shows the stationary

distribution of φ in the case of partial information on µ, while the three remaining figures

show the stationary distribution in the case of inside information for different values of ε.
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The row of figures below are plots of the stationary distribution for a = 0.5, b = 0.2, σ

at a relatively low value of 0.3, λa = 1 and λb = 1. The intuition outlined earlier is clear in

the case where σ is relatively small and λa = λb as well.

6.6 The Links Between the Three Cases

In Section 4.2, we made the claim that when ε → ∞ we approach the case of partial

information on µ. The following proposition makes this claim more precise:

Proposition 6.6.1. (Inside information→ Partial information as ε→∞.) Define probabil-

ity measures ν and νε on [0, 1] by ν(dx) = π(x)dx, and νε(dx) = πε(x)dx. Then as ε→∞,

νε converges weakly to ν, i.e. for any bounded, continuous function f ,
∫
fdνε →

∫
fdν.

The proof of Proposition 6.6.1 requires the following lemma:

Lemma 6.6.2. For any ε0 > 0, the family of functions
{
πε
Nε

: ε ≥ ε0

}
is bounded above by

an integrable function.

Proof. See page 73 in the Appendix.

Proof of Proposition 6.6.1. By Proposition III.5.7 of Cinlar (12), the proposition is equiv-

alent to showing that the distribution functions associated with νε converge pointwise to

the distribution function associated with ν. As both νε and ν have densities, by Scheffé’s

theorem, it is sufficient to show that limε→∞ πε(x) = π(x) a.s.. Now, as limε→∞ d(ε) = 1,
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for x ∈ (0, 1),

lim
ε→∞

(
x

1− x

)2cd(ε)(λa−λb)
=

(
x

1− x

)2c(λa−λb)
,

lim
ε→∞

exp

[
−2cd(ε) [λa − (λa − λb)x]

x(1− x)

]
= exp

[
−2c [λa − (λa − λb)x]

x(1− x)

]
.

Hence, for all x ∈ (0, 1),

lim
ε→∞

πε(x)

Nε
=
π(x)

N
.

Integrating both sides of the equation over [0, 1],

1

N
=

∫ 1

0

π(x)

N
dx

=

∫ 1

0
lim
ε→∞

πε(x)

Nε
dx

= lim
ε→∞

∫ 1

0

πε(x)

Nε
dx (by the dominated convergence theorem)

= lim
ε→∞

1

Nε
.

By the finiteness of N and Nε for all ε > 0, limε→∞Nε = N . As such, for all x ∈ (0, 1),

lim
ε→∞

πε(x) = lim
ε→∞

Nε
πε(x)

Nε
= lim

ε→∞
Nε lim

ε→∞

πε(x)

Nε
= N

π(x)

N
= π(x).

As such, we can identify the case of partial information on µ with the case of inside

information on µ with ε = ∞. To make this connect more explicit in our notation, we

may write π, the density of the invariant probability measure of φ in the case of partial

information, as π∞.

In Section 4.2, we also claimed that when ε → 0 we approach the case of complete

information on µ. As with the case of ε→∞, we can formulate this statement in terms of

weak convergence of measures:

Proposition 6.6.3. (Inside information→ Complete information as ε→ 0.) As in Proposi-

tion 6.6.1, define probability measures ν0 and νε on [0, 1] by ν0{0} = λb
λa+λb

, ν0{1} = λa
λa+λb

,

and νε(dx) = πε(x)dx. Then as ε → 0, νε converges weakly to ν0, i.e. for any bounded,

continuous function f ,
∫
fdνε →

∫
fdν0.

Before proving this proposition, we will first prove the following lemma:

Lemma 6.6.4. ∫ 1

0
x(1− x)πε(x)dx→ 0 as ε→ 0.

Proof. See page 74 in the Appendix.
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Proof of Proposition 6.6.3. It is enough to show that for any subsequence {εn}n∈N such that

limn→∞ εn = 0, there exists a further subsequence {ε′n}n∈N of {εn} such that νε′n converges

weakly to ν0 as n→∞ (see Theorem 1.3.3 of Silvestrov (47)).

Let {εn} be a subsequence such that εn → 0 as n→∞. By Helly’s Selection Principle

(see Theorem 5.5.1 of Bhatia (8)), there exists some probability measure ν̃ on [0, 1] and a

subsequence {ε′n} of {εn} such that νε′n converges weakly to ν̃ as n→∞. As the function

f(x) = x(1− x) is continuous and bounded on [0, 1], the weak convergence implies that∫ 1

0
x(1− x)ν̃(dx) = lim

n→∞

∫ 1

0
x(1− x)πε′n(x)dx

= 0, (by Lemma 6.6.4)

⇒ ν̃(0, 1) = 0,

i.e. the measure of the open set (0, 1) under ν̃ is zero. Now, note that for each ε′n, as πε′n
is the invariant probability measure for φε

′
n ,∫ 1

0
xπε′n(x)dx = lim

t→∞
E
[
φ
ε′n
t

]
.

By the tower property of expectation,

E
[
φ
ε′n
t

]
= E

[
P{µt = a|FY

t }
]

= E
[
E
[
1{µt=a}|F

Y
t

]]
= E

[
1{µt=a}

]
= P{µt = a},

⇒ lim
t→∞

E
[
φ
ε′n
t

]
= lim

t→∞
P{µt = a}

=
λa

λa + λb
.

As such,

0× ν̃{0}+ 1× ν̃{1} = lim
n→∞

∫ 1

0
xπε′n(x)dx

=
λa

λa + λb
,

⇒ ν̃{1} =
λa

λa + λb
, ν̃{0} =

λb
λa + λb

,

⇒ ν̃ = ν0.

As such, the sequence of measures {νε′n} converges weakly to ν0. By Theorem 1.3.3 of

Silvestrov (47), we conclude that νε converges weakly to ν0 as ε→ 0.
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Due to Proposition 6.6.3, we can identify the case of complete information on µ with

the case of inside information on µ with ε = 0.

6.7 A Discussion on Growth Rates

Let ε ∈ (0,∞]. Extending the notation of Corollary 5.2.4, let γ(V ∗ε ) denote the largest pos-

sible long-run discounted growth rate of the wealth process in the case of inside information

with parameter ε. Then

γ(V ∗ε ) = lim
T→∞

E
[

1

2σ2T

∫ T

0

(
E
[
µt|FY

t

]
− r
)2
dt

]
(by Cor 5.2.4)

=
1

2σ2
lim
T→∞

E
[

1

T

∫ T

0
[b+ (a− b)φεt − r]

2 dt

]
=

1

2σ2

∫ 1

0
[(a− b)x+ (b− r)]2 πε(x)dx. (by Thm 2.4.3)

Using the decomposition

[(a− b)x+ (b− r)]2 = −(a− b)2(−x2 + x) + (a− b)2x+ 2(a− b)(b− r)x+ (b− r)2

= −(a− b)2x(1− x) + (a− b)(a+ b− 2r)x+ (b− r)2,

2σ2γ(V ∗ε ) =

∫ 1

0

[
−(a− b)2x(1− x) + (a− b)(a+ b− 2r)x+ (b− r)2

]
πε(x)dx

= −(a− b)2

[∫ 1

0
x(1− x)πε(x)dx

]
+ (a− b)(a+ b− 2r)

[∫ 1

0
xπε(x)dx

]
+ (b− r)2

= −(a− b)2

[∫ 1

0
x(1− x)πε(x)dx

]
+ (a− b)(a+ b− 2r) lim

t→∞
E[φεt ] + (b− r)2.

(as πε is the invariant probability measure for φε)

By working similar to that of the proof of Proposition 6.6.3,

⇒ lim
t→∞

E[φεt ] = lim
t→∞

P{µt = a}

=
λa

λa + λb
.

Substituting this into the previous equation and combining the last two terms gives us

the following proposition:

Proposition 6.7.1. Let ε be in (0,∞]. In the case of inside information on mean return µ

with parameter ε, the largest possible long-run discounted growth rate of the wealth process,
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denoted by γ(V ∗ε ), is given by

γ(V ∗ε ) =
1

2σ2

λa(a− r)2 + λb(b− r)2

λa + λb
− (a− b)2

2σ2

∫ 1

0
x(1− x)πε(x)dx. (6.5)

If νε is the invariant probability measure for φε, then we can rewrite the above equation as

γ(V ∗ε ) =
1

2σ2

λa(a− r)2 + λb(b− r)2

λa + λb
− (a− b)2

2σ2

∫ 1

0
x(1− x)νε(dx). (6.6)

Note that the first term in equation (6.5) is equal to the largest possible long-run dis-

counted growth rate of the wealth process in the case of complete information on µ. As the

second term in equation (6.5) is always less than or equal to 0, the proposition confirms the

intuition that in the long run, our trading strategy in the case of inside information will

never outperform our trading strategy in the case of complete information, no matter how

good our estimate of µ is. In addition, note that when νε is replaced by ν0, the invariant

probability measure of φ in the case of complete information (see Proposition 6.6.3), the

second term on the RHS of equation (6.6) is equal to zero. As such, Proposition 6.7.1 holds

for ε = 0 as well.

We can use Proposition 6.4.2 to obtain a more explicit expression for the growth rate:

Proposition 6.7.2. Let ε ∈ [0,∞]. Then

γ(V ∗ε ) =
1

2σ2

λa(a− r)2 + λb(b− r)2

λa + λb
− (a− b)2Kq(Λ)

2Kq(Λ) +
√

λa
λb
K1+q(Λ) +

√
λb
λa
K1−q(Λ)

 ,
where N = 4cd(ε), Λ = N

√
λaλb, q = N

2 (λa−λb), and K is the modified Bessel function of

the second kind. In the case where λa = λb =: λ,

γ(V ∗ε ) =
1

2σ2

[
(a− r)2 + (b− r)2

2
− (a− b)2K0(Λ)

2K0(Λ) + 2K1(Λ)

]
, (6.7)

where Λ = Nλ = 4cd(ε)λ.

The rest of this section is devoted to deriving an asymptotic for the long-run discounted

growth rate γ(V ∗ε ) as ε goes to zero in the case where λa = λb =: λ.

Recall that d(ε) = ε2

σ2+ε2
, which means that as ε goes to zero, Λ goes to zero. The

following lemma is the key to deriving the asymptotic that we seek:

Lemma 6.7.3. As Λ goes to zero,

K0(Λ)

K0(Λ) +K1(Λ)
= Λ log

(
2

βΛ

)
+O

(
(Λ log Λ)2

)
, (6.8)

where β = eγ, with γ being the Euler-Mascheroni constant.
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Proof. Note that for small x,

1

1− x
= 1 + x+ x2 + · · · = 1 +O(x). (6.9)

By Proposition 2.5.6, as Λ goes to zero,

K0(Λ)

K0(Λ) +K1(Λ)
=

−
(
log Λ

2 + γ
)

+O(Λ2 log Λ)

−
(
log Λ

2 + γ
)

+O(Λ2 log Λ) + 1
Λ +O(Λ log Λ)

=
− log

(
βΛ
2

)
+O(Λ2 log Λ)

− log
(
βΛ
2

)
+ 1

Λ +O(Λ log Λ)

=
−Λ log

(
βΛ
2

)
+O(Λ3 log Λ)

1−
[
Λ log

(
βΛ
2

)
+O(Λ2 log Λ)

]
=

[
−Λ log

(
βΛ

2

)
+O(Λ3 log Λ)

]{
1 +O

[
Λ log

(
βΛ

2

)
+O(Λ2 log Λ)

]}
(by Eqn (6.9))

=

[
−Λ log

(
βΛ

2

)
+O(Λ3 log Λ)

]
[1 +O(Λ log Λ)]

= Λ log

(
2

βΛ

)
+O

(
(Λ log Λ)2

)
.

Lemma 6.7.4. As ε goes to zero,

K0(Λ)

K0(Λ) +K1(Λ)
=

4cλε2

σ2
log

(
σ2

2cλβε2

)
+O

(
ε4(log ε2)2

)
,

where β = eγ, with γ being the Euler-Mascheroni constant.

Proof. The proof basically involves substituting Λ = 4cλε2

σ2+ε2
into equation (6.8). See page 74

in the Appendix for the complete proof.

Applying Lemma 6.7.4 to equation (6.7) and using the fact that c = σ4

(a−b)2 , we have the

asymptotic of the largest-possible long-run discounted growth rate as ε goes to zero:

Proposition 6.7.5. In the case of λa = λb =: λ, as ε goes to zero,

γ(V ∗ε ) =
(a− r)2 + (b− r)2

4σ2
− λε2 log

(
σ2

2cλβε2

)
+O

(
ε4(log ε2)2

)
,

where β = eγ, with γ being the Euler-Mascheroni constant.

We conclude the discussion on the long-run discounted growth rate with two plots that

gives an idea of how the parameter ε affects the growth rate.
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In the plot above, the blue line is the graph of γ(V ∗ε ) against ε, for parameters a = 0.3,

b = 0.1, r = 0.2, and λa = λb = 1. The graph suggests that the mapping ε 7→ γ(V ∗ε ) is

continuous at ε = 0, which is what Proposition 6.6.3 predicts. It is also clear that γ(V ∗ε )

decreases as ε increases. This is in line with our intuition that we must achieve greater

portfolio gains on the average if our inside information on the stock’s mean return is less

noisy. The horizontal green line represents the maximum long-run discounted growth rate

in the case of no information. It can be seen that as ε grows large, the blue line tends

toward the green line. This is in line with Proposition 6.6.1.
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In the plot above, the blue line is again the mapping ε 7→ γ(V ∗ε ) for the same parameters

as before. The green line represents the asymptotic given in Proposition 6.7.5. It appears

that the asymptotic holds for only very small values of ε.

64



Chapter 7

Conclusion & Future Research

In this chapter, we provide a summary of the results of this thesis, along with some ideas

for future research.

This thesis has sought to model inside information within the context of a regime-

switching model. Our financial market model consisted of a bond with a fixed interest rate

r, and a stock whose price process S is the solution of the SDE

dSt = µtStdt+ σStdWt,

where µ is a continuous-time Markov chain with two states, and σ is constant. In this

context, we derived explicit expressions for the greatest possible expected utility at a given

terminal time, the greatest possible long-run discounted growth rate of the wealth process,

along with a system of SDEs from which the trading strategy that achieves these maximums

can be obtained. These expressions were derived for the cases of complete, partial and

inside information. We also showed that by modeling the inside information available to

the investor as a noise-corrupted signal of the regime that µ is in, the cases of partial and

complete information can be obtained (from the point of view of the invariant probability

measure) by varying the amount of noise in the inside information. We also obtained an

asymptotic for the largest possible long-run discounted growth rate as the noise parameter

ε goes to zero, in the case where the rates of entering each state of the Markov chain is

equal.

There are a number of directions that future research can take place. The first direction

would be to explore the case where the number of states µ can take is more than two. The

reason why we were able to find explicit expressions in the case of two states for µ was

because of the relationship

P{µt = a|FY
t } = 1− P{µt = b|FY

t }.

As such, the system of SDEs obtained from the Shiryaev-Wonham filter became a single
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SDE in one variable (equation (6.1)), which was straightforward to analyze. In the case

where µ can take on values in the set {a1, . . . , ad} with d ≥ 3, there is no obvious relationship

between the quantities P{µt = a1|FY
t }, . . . ,P{µt = ad|FY

t } apart from the fact that they

sum up to one. Future research could explore ways to solve the system of SDEs for the

variables P{µt = a1|FY
t }, . . . ,P{µt = ad|FY

t } given by the Shiryaev-Wonham filter.

A second possible direction for future research would be to consider the financial market

model with stochastic volatility. This means that instead of assuming that σ is constant

with time, σ is modeled as a stochastic process. The stochastic filtering results presented

in Chapter 3 are only applicable for the case where volatility is constant— as such, more

general filtering results must be used. While these general stochastic filtering results are

known (see Xiong (57)), to our knowledge these results have not been applied to this regime-

switching model with stochastic volatility.

A third direction for future research would be to make the relationship between the

drift rate of the stock price process and the additional signal received by the investor more

complex. In the model discussed in this thesis (see Section 4.2), the investor received a

noise-corrupted signal of µ, which was exactly the drift rate of the stock price process. A

more realistic model would be for the additional signal received by the investor to be a

noise-corrupted version of some underlying factor (e.g. state of the economy), which would

be called µ. The drift rate of the stock price process would then be modeled as either a

deterministic or random function of µ.

Finally, one could consider a model that consists of not just one but n stocks. The stock

price processes, denoted by the vector S, can be modeled as the solution to the system of

SDEs

dSt = h(µt) · Stdt+ σStdWt, (7.1)

where h is some function, σ is an n×m matrix, W is an m-dimensional Wiener process and

µ is the process of the underlying factor to which we alluded in the previous paragraph. In

this case, a trading strategy is given by n processes p = (p1, . . . , pn), where pit is the fraction

of the investor’s wealth invested in stock i at time t. It is worth noting that a generalization

of Proposition 5.2.1 in the case of n stocks is easy to derive: if V is the wealth process

associated with trading strategy p, then one obtains∫ T

0

1

V̄t
dV̄t =

n∑
i=1

∫ T

0

pit
S̄it
dS̄it .

With a little bit more work, generalizations of the other propositions in Chapter 5 are not

hard to derive either. The difficulty of the analysis in this case is the derivation of explicit

expressions when the filtration used is that which is identified with the investor’s knowledge.

The complex relationships between the underlying factor and the stock prices, as well as

that between the stock prices themselves, make analysis difficult.
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Appendix A

Proofs of Technical Lemmas

This appendix consists of proofs of some lemmas and propositions which were presented in

the thesis.

Lemma 3.3.4. Let (Ω,F , {Ft}t∈[0,T ],P) be a complete filtered probability space. Let W be

an n-dimensional {Ft}-Wiener process on [0, T ], and let (gt)t∈[0,T ] be a measurable process

(in the sense of Definition 2.2.1) taking values in Rn. let B be some positive real constant.

Assume that P
{
ω :
∫ T

0 gt(ω)2dt <∞
}

= 1, and that processes g and W are independent

of each other. Then

E exp

[
1

B

∫ T

0
gs · dWs −

1

2B2

∫ T

0
‖gs‖2ds

]
= 1. (A.1)

If, in addition, g is adapted to the filtration {Ft}, then by defining the probability measure

P̃ on (Ω,F) by

dP̃ = exp

[
1

B

∫ T

0
gs · dWs −

1

2B2

∫ T

0
‖gs‖2ds

]
dP,

The process W̃ given by

W̃t = Wt −
1

B

∫ t

0
gsds

is an {Ft}-Wiener process under the probability measure P̃.

Proof. For each i = 1, . . . , n, let g(i) and W (i) denote the ith component of g and W

respectively. Due to the independence of g and W, we can assume that the two processes

are defined on a product space (Ω,F ,P) = (Ω1 × Ω2,F1 × F2,P1 × P2), such that for each

ω ∈ Ω, writing ω = (ω1, ω2), where ω1 ∈ Ω1, ω2 ∈ Ω2, we have

gs(ω) = gs(ω1), Ws(ω) = Ws(ω2) for all s.
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As such,

E exp

[
1

B

∫ T

0
gs · dWs −

1

2B2

∫ T

0
‖gs‖2ds

]
=

∫
Ω1×Ω2

exp

[
1

B

∫ T

0
gs(ω1) · dWs(ω2)− 1

2B2

∫ T

0
‖gs(ω1)‖2ds

]
d(P1 × P2)

=

∫
Ω1

exp

[
− 1

2B2

∫ T

0
‖gs(ω1)‖2ds

]
×
{∫

Ω2

exp

[
1

B

∫ T

0
gs(ω1) · dWs(ω2)

]
dP2

}
dP1

(Fubini’s theorem, see Thm I.6.4 in Cinlar (12))

For fixed ω1 ∈ Ω1, for each i = 1, . . . , n,∫ T

0
g(i)
s (ω1)dW (i)

s = lim
n→∞

n∑
k=1

g
(i)
T (k−1)

n

(ω1)

[
W

(i)
Tk
n

−W (i)
T (k−1)

n

]

= lim
n→∞

n∑
k=1

g
(i)
T (k−1)

n

(ω1)Zk,

where each Zk is Gaussian distributed with mean 0 and variance T
n , and the Zk’s are

independent of each other. As such,

n∑
k=1

g
(i)
T (k−1)

n

(ω1)Zk ∼ N

(
0,
T

n

n∑
k=1

g
(i)
T (k−1)

n

(ω1)2

)
,

⇒
∫ T

0
g(i)
s (ω1)dW (i)

s ∼ N

(
0, lim
n→∞

T

n

n∑
k=1

g
(i)
T (k−1)

n

(ω1)2

)
,

⇒
∫ T

0
g(i)
s (ω1)dW (i)

s ∼ N
(

0,

∫ T

0
g(i)
s (ω1)2ds

)
.

Noting further that the W (i)’s are independent of each other,

∫
Ω2

exp

[
1

B

∫ T

0
gs(ω1) · dWs(ω2)

]
dP2 =

∫
Ω2

{
n∏
i=1

exp

[
1

B

∫ T

0
g(i)
s (ω1)dW (i)

s (ω2)

]}
dP2

=

n∏
i=1

∫
Ω2

exp

[
1

B

∫ T

0
g(i)
s (ω1)dW (i)

s (ω2)

]
dP2

=

n∏
i=1

E exp [Ai] ,

where Ai is Gaussian distributed with mean 0 and variance 1
B2

∫ T
0 g

(i)
s (ω1)2ds. For a random

variable A which is Gaussian with mean 0 and finite variance σ2, the moment generating
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function of A is given by E[exp(tA)] = exp
(
σ2t2

2

)
. Hence, by substituting t = 1,

E exp[A] = exp

(
σ2

2

)
.

As such,

E exp

[
1

B

∫ T

0
gs · dWs −

1

2B2

∫ T

0
‖gs‖2ds

]
=

∫
Ω1

exp

[
− 1

2B2

∫ T

0
‖gs(ω1)‖2ds

]
×

{
n∏
i=1

E exp [Ai]

}
dP1

=

∫
Ω1

exp

[
− 1

2B2

∫ T

0
‖gs(ω1)‖2ds

]
×

{
n∏
i=1

exp

[
1

2B2

∫ T

0
g(i)
s (ω1)2ds

]}
dP1

=

∫
Ω1

exp

[
− 1

2B2

∫ T

0

n∑
i=1

g(i)
s (ω1)2ds

]
× exp

[
1

2B2

n∑
i=1

∫ T

0
g(i)
s (ω1)2ds

]
dP1

= 1,

as required. Now that g is adapted to the filtration {Ft} and equation (A.1) holds, the

conditions for the multi-dimensional Girsanov theorem (Theorem 3.3.1) hold, and thus the

rest of the lemma follows by a direct application of Girsanov’s theorem for the function
g
B .

Proposition 6.4.2. For any ε > 0,∫ 1

0
x(1− x)πε(x)dx =

Kq(Λ)

2Kq(Λ) +
√

λa
λb
K1+q(Λ) +

√
λb
λa
K1−q(Λ)

,

where N = 4cd(ε), Λ = N
√
λaλb, q = N

2 (λa−λb), and K is the modified Bessel function of

the second kind.

Proof. Writing out the normalization constant explicitly,

∫ 1

0
x(1− x)πε(x)dx =

∫ 1
0

1
x(1−x)

(
x

1−x

)N
2

(λa−λb)
exp

[
−N [λa−(λa−λb)x]

2x(1−x)

]
dx∫ 1

0
1

x2(1−x)2

(
x

1−x

)N
2

(λa−λb)
exp

[
−N [λa−(λa−λb)x]

2x(1−x)

]
dx

. (A.2)

Splitting up the numerator,

∫ 1

0

1

x(1− x)

(
x

1− x

)N
2

(λa−λb)
exp

[
−N [λa − (λa − λb)x]

2x(1− x)

]
dx

=

∫ 1
2

0

1

x(1− x)

(
x

1− x

)N
2

(λa−λb)
exp

[
−N [λa − (λa − λb)x]

2x(1− x)

]
dx
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+

∫ 1

1
2

1

x(1− x)

(
x

1− x

)N
2

(λa−λb)
exp

[
−N [λa − (λa − λb)x]

2x(1− x)

]
dx

=

∫ 1
2

0

1

x(1− x)

(
x

1− x

)N
2

(λa−λb)
exp

[
−N [λa − (λa − λb)x]

2x(1− x)

]
dx

+

∫ 1
2

0

1

x(1− x)

(
x

1− x

)N
2

(λb−λa)

exp

[
−N [λb − (λb − λa)x]

2x(1− x)

]
dx, (A.3)

where the last equality was obtained by replacing x with 1−x in the second integral. Note

that the first integral is exactly the same as the second, except that λa and λb are swtiched.

As such, it is enough to evaluate the second integral because we would obtain an expression

for the first integral as well. Consider the change of variables given by 1
x(1−x) = 4 cosh2 ϕ

2 .

When x = 1
2 , ϕ = 0, and when x = 0, ϕ =∞. Also,

x2 − x+
1

4 cosh2 ϕ
2

= 0,

⇒ x =
1

2

(
1−

√
1− 1

cosh2 ϕ
2

)
(we ignore the positive root as x ∈

[
0, 1

2

]
)

=
1

2

(
1− tanh

ϕ

2

)
,

dx

dϕ
= − 1

4 cosh2 ϕ
2

.

Substituting this into the second integral of equation (A.3),

∫ 1
2

0

1

x(1− x)

(
x

1− x

)N
2

(λb−λa)

exp

[
−N [λb − (λb − λa)x]

2x(1− x)

]
dx

=

∫ ∞
0

4 cosh2 ϕ

2

(
1− tanh ϕ

2

1 + tanh ϕ
2

)N
2

(λb−λa)

× exp

{
−2N cosh2 ϕ

2

[
λb − (λb − λa)

(
1− tanh ϕ

2

2

)]}
1

4 cosh2 ϕ
2

dϕ

=

∫ ∞
0

(e−ϕ)
N
2

(λb−λa) exp

{
−N

2
(coshϕ+ 1)

[
2λb − (λb − λa)

(
1− sinhϕ

coshϕ+ 1

)]}
dϕ

=

∫ ∞
0

(eϕ)
N
2

(λa−λb) exp

{
−N

2

[
(λb + λa)(coshϕ+ 1) + (λb − λa) sinhϕ

]}
dϕ

= exp

[
−N

2
(λa + λb)

] ∫ ∞
0

exp

{
N

2
(λa − λb)(ϕ+ sinhϕ)− N

2
(λa + λb) coshϕ

}
dϕ.
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As such, for the first integral on the RHS on equation (A.3),

∫ 1
2

0

1

x(1− x)

(
x

1− x

)N
2

(λa−λb)
exp

[
−N [λa − (λa − λb)x]

2x(1− x)

]
dx

= exp

[
−N

2
(λa + λb)

] ∫ ∞
0

exp

{
N

2
(λb − λa)(ϕ+ sinhϕ)− N

2
(λb + λa) coshϕ

}
dϕ

= exp

[
−N

2
(λa + λb)

] ∫ 0

−∞
exp

{
N

2
(λa − λb)(ϕ+ sinhϕ)− N

2
(λa + λb) coshϕ

}
dϕ,

where we replaced ϕ with −ϕ in the last step and used the fact that sinh(−ϕ) = − sinhϕ,

cosh(−ϕ) = coshϕ. This implies that

∫ 1

0

1

x(1− x)

(
x

1− x

)N
2

(λa−λb)
exp

[
−N [λa − (λa − λb)x]

2x(1− x)

]
dx

= exp

[
−N

2
(λa + λb)

] ∫ ∞
−∞

exp

{
N

2
(λa − λb)(ϕ+ sinhϕ)− N

2
(λa + λb) coshϕ

}
dϕ.

We can perform the same method of splitting the integral into two and doing a change of

variables on the denominator of the RHS of equation (A.2). As a result, equation (A.2)

becomes∫ 1

0
x(1− x)πε(x)dx

=

∫∞
−∞ exp

{
N
2 (λa − λb)(ϕ+ sinhϕ)− N

2 (λa + λb) coshϕ
}
dϕ∫∞

−∞ 2(1 + coshϕ) exp
{
N
2 (λa − λb)(ϕ+ sinhϕ)− N

2 (λa + λb) coshϕ
}
dϕ
,

∫ 1

0
x(1− x)πε(x)dx =

∫∞
−∞ exp {q(ϕ+ sinhϕ)− (q +Nλb) coshϕ} dϕ∫∞

−∞ 2(1 + coshϕ) exp {q(ϕ+ sinhϕ)− (q +Nλb) coshϕ} dϕ
(A.4)

Now, consider the change of variables given by φ = expϕ. Then ϕ = ∞ ⇒ φ = ∞,

ϕ = −∞⇒ φ = 0. Also,

dϕ

dφ
=

1

φ
,

coshϕ =
1

2

(
φ+

1

φ

)
,

sinhϕ =
1

2

(
φ− 1

φ

)
.
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Applying this change of variables to the numerator of the RHS of equation (A.4):∫ ∞
−∞

exp {q(ϕ+ sinhϕ)− (q +Nλb) coshϕ} dϕ

=

∫ ∞
0

exp

{
q

[
log φ+

1

2

(
φ− 1

φ

)]
− (q +Nλb)

1

2

(
φ+

1

φ

)}
1

φ
dφ

=

∫ ∞
0

φq−1 exp

[
−Nλb

2
φ− Nλa

2φ

]
dφ.

Letting ψ = Nλb
2 φ,

∫ ∞
0

φq−1 exp

[
−Nλb

2
φ− Nλa

2φ

]
dφ =

∫ ∞
0

(
2ψ

Nλb

)q−1

exp

[
−ψ − N2λaλb

4ψ

]
2

Nλb
dψ

=

(
2

Nλb

)q ∫ ∞
0

ψq−1 exp

[
−ψ − (N

√
λaλb)

2

4ψ

]
dψ

=

(
2

Nλb

)q
× 2

(
N
√
λaλb
2

)q
Kq(N

√
λaλb)

= 2

(√
λa
λb

)q
Kq(N

√
λaλb),

where the second-last equality was obtained by applying formula 3.471.12 in Gradshteyn

& Ryzhik (21). Applying this same change of variables to the denominator of the LHS of

equation (A.4):∫ ∞
−∞

2(1 + coshϕ) exp {q(ϕ+ sinhϕ)− (q +Nλb) coshϕ} dϕ

= 2

∫ ∞
0

φq−1 exp

[
−Nλb

2
φ− Nλa

2φ

]
dφ+

∫ ∞
0

φq exp

[
−Nλb

2
φ− Nλa

2φ

]
dφ

+

∫ ∞
0

φq−2 exp

[
−Nλb

2
φ− Nλa

2φ

]
dφ.

The first integral on the RHS has already been computed. The other two integrals can

computed in a similar manner:∫ ∞
0

φq exp

[
−Nλb

2
φ− Nλa

2φ

]
dφ =

(
2

Nλb

)q+1 ∫ ∞
0

ψ(q+1)−1 exp

[
−ψ − (N

√
λaλb)

2

4ψ

]
dψ

=

(
2

Nλb

)q+1

× 2

(
N
√
λaλb
2

)q+1

K1+q(N
√
λaλb)

= 2

(√
λa
λb

)q+1

K1+q(N
√
λaλb),
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∫ ∞
0

φq−2 exp

[
−Nλb

2
φ− Nλa

2φ

]
dφ =

(
2

Nλb

)q−1 ∫ ∞
0

ψ(q−1)−1 exp

[
−ψ − (N

√
λaλb)

2

4ψ

]
dψ

=

(
2

Nλb

)q−1

× 2

(
N
√
λaλb
2

)q−1

K1−q(N
√
λaλb)

= 2

(√
λa
λb

)q−1

K1−q(N
√
λaλb).

Substituting all these expressions into equation (A.4):∫ 1

0
x(1− x)πε(x)dx

=
2
(√

λa
λb

)q
Kq(N

√
λaλb)

4
(√

λa
λb

)q
Kq(N

√
λaλb) + 2

(√
λa
λb

)q+1

K1+q(N
√
λaλb) + 2

(√
λa
λb

)q−1

K1−q(N
√
λaλb)

=
Kq(N

√
λaλb)

2Kq(N
√
λaλb) +

√
λa
λb
K1+q(N

√
λaλb) +

√
λb
λa
K1−q(N

√
λaλb)

.

This concludes the proof.

Lemma 6.6.2. For any ε0 > 0, the family of functions
{
πε
Nε

: ε ≥ ε0

}
is bounded above by

an integrable function.

Proof. For any ε > 0,

πε(x)

Nε
=

cd(ε)

x2(1− x)2

(
x

1− x

)2cd(ε)(λa−λb)
exp

[
−2cd(ε) [λa − (λa − λb)x]

x(1− x)

]
=

c

x2(1− x)2

(
x

1− x

)2c(λa−λb)
exp

[
−2c [λa − (λa − λb)x]

x(1− x)

]
×

{
d(ε)

(
1− x
x

)2c[1−d(ε)](λa−λb)
exp

[
2c [1− d(ε)]

λa − (λa − λb)x
x(1− x)

]}

=
π(x)

N
d(ε)

{(
1− x
x

)λa−λb
exp

[
λa − (λa − λb)x

x(1− x)

]}2c[1−d(ε)]

:=
π(x)

N
d(ε) [q(x)]2c[1−d(ε)] ,

where q is defined as

q(x) =

(
1− x
x

)λa−λb
exp

[
λa − (λa − λb)x

x(1− x)

]
, x ∈ (0, 1).

Note that d(ε) increases from 0 to 1 as ε increases from 0 to ∞. Using the fact that the
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mapping x 7→ ax is increasing when a ≥ 1, for all ε ≥ ε0,

πε(x)

Nε
≤ π(x)

N
d(ε) [q(x) ∨ 1]2c[1−d(ε)]

≤ π(x)

N
[q(x) ∨ 1]2c[1−d(ε0)] .

But the function on the RHS is integrable:∫ 1

0

π(x)

N
[q(x) ∨ 1]2c[1−d(ε0)] dx =

∫
{q<1}

π(x)

N
dx+

∫
{q≥1}

π(x)

N
[q(x)]2c[1−d(ε0)] dx

≤
∫ 1

0

π(x)

N
dx+

∫ 1

0

π(x)

N
[q(x)]2c[1−d(ε0)] dx

=
1

N
+

∫ 1

0

πε(x)

Nε0d(ε0)
dx

=
1

N
+

1

Nε0d(ε0)
<∞.

Lemma 6.6.4. ∫ 1

0
x(1− x)πε(x)dx→ 0 as ε→ 0.

Proof. As the integrand is non-negative, it is clear that the integral is non-negative for every

ε > 0. Using Proposition 6.4.2 and the fact that K1−q(Λ) > 0 (see Proposition 2.5.1),∫ 1

0
x(1− x)πε(x)dx ≤ Kq(Λ)

2Kq(Λ) +
√

λa
λb
K1+q(Λ)

,

∫ 1

0
x(1− x)πε(x)dx ≤ 1

2 +
√

λa
λb

K1+q(Λ)
Kq(Λ)

. (A.5)

Note that q = N
2 (λa − λb) = λa−λb

2
√
λaλb

Λ. Note also that Λ = 4cd(ε)
√
λaλb, hence Λ → 0 as

ε→ 0. As such, we can apply Proposition 2.5.4:

lim
ε→0

K1+q(Λ)

Kq(Λ)
= lim

Λ→0

K1+αΛ(Λ)

KαΛ(Λ)
(where α = λa−λb

2
√
λaλb

)

=∞.

Substituting this into equation (A.5),

0 ≤ lim
ε→0

∫ 1

0
x(1− x)πε(x)dx

≤ 1

2 +
√

λa
λb

limε→∞
K1+q(Λ)
Kq(Λ)

= 0.
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Lemma 6.7.4. As ε goes to zero,

K0(Λ)

K0(Λ) +K1(Λ)
=

4cλε2

σ2
log

(
σ2

2cλβε2

)
+O

(
ε4(log ε2)2

)
,

where β = eγ, with γ being the Euler-Mascheroni constant.

Recall that Λ = 4cλd(ε) = 4cλε2

σ2+ε2
.

Proof. Recall that for small x,

1

1 + x
= 1− x+ x2 − · · · = 1 +O(x), (A.6)

and

log(1 + x) = x− x2

2
+
x3

3
− · · · = x+O(x2). (A.7)

As such, as ε goes to zero,

Λ =
4cλε2

σ2 + ε2

=
4cλ ε

2

σ2

1 + ε2

σ2

=
4cλε2

σ2

[
1 +O

(
ε2

σ2

)]
(by Eqn (A.6))

=
4cλε2

σ2
+O(ε4),

and

log Λ = log

[
4cλε2

σ2
+O(ε4)

]
= log

[
4cλε2

σ2

(
1 +O(ε2)

)]
= log

(
4cλε2

σ2

)
+ log

[
1 +O(ε2)

]
= log

(
4cλε2

σ2

)
+O(ε2). (by Eqn (A.7))

Thus, as ε goes to zero,

Λ log Λ =

[
4cλε2

σ2
+O(ε4)

] [
log

(
4cλε2

σ2

)
+O(ε2)

]
=

4cλε2

σ2
log

(
4cλε2

σ2

)
+O(ε4 log ε2),
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⇒ K0(Λ)

K0(Λ) +K1(Λ)
= Λ log

(
2

βΛ

)
+O

(
(Λ log Λ)2

)
(by Lemma 6.7.3)

= −Λ

[
log Λ + log

β

2

]
+O

(
ε4(log ε2)2

)
= −4cλε2

σ2
log

(
4cλε2

σ2

)
+O(ε4 log ε2)

−
[

4cλε2

σ2
+O(ε4)

]
log

β

2
+O

(
ε4(log ε2)2

)
= −4cλε2

σ2

[
log

(
4cλε2

σ2

)
+ log

β

2

]
+O

(
ε4(log ε2)2

)
=

4cλε2

σ2
log

(
σ2

2cλβε2

)
+O

(
ε4(log ε2)2

)
.
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